

Welcome to ESP8266 Arduino Core’s documentation!

Contents:

	Installing
	Boards Manager

	Using git version

	Reference
	Digital IO

	Analog input

	Analog output

	Timing and delays

	Serial

	Progmem

	Libraries
	WiFi(ESP8266WiFi library)

	Ticker

	EEPROM

	I2C (Wire library)

	SPI

	SoftwareSerial

	ESP-specific APIs

	mDNS and DNS-SD responder (ESP8266mDNS library)

	SSDP responder (ESP8266SSDP)

	DNS server (DNSServer library)

	Servo

	Other libraries (not included with the IDE)

	File system
	Flash layout

	File system limitations

	Uploading files to file system

	File system object (SPIFFS)

	Filesystem information structure

	Directory object (Dir)

	File object

	ESP8266WiFi
	Introduction

	Class Description

	Diagnostics

	What’s Inside?

	OTA Updates
	Introduction

	Arduino IDE

	Web Browser

	HTTP Server

	Stream Interface

	Updater class

	PROGMEM
	Intro

	Declare a flash string within code block.

	Functions to read back from PROGMEM

	How do I declare a global flash string and use it?

	How do I use inline flash strings?

	How do I declare and use data in PROGMEM?

	How do I declare some data in PROGMEM, and retrieve one byte from it.

	In summary

	Boards
	Adafruit HUZZAH ESP8266 (ESP-12)

	ESPresso Lite 1.0

	ESPresso Lite 2.0

	Phoenix 1.0

	Phoenix 2.0

	NodeMCU 0.9

	NodeMCU 1.0

	Olimex MOD-WIFI-ESP8266-DEV

	Olimex MOD-WIFI-ESP8266

	Olimex ESP8266-EVB

	SparkFun ESP8266 Thing

	SweetPea ESP-210

	ESPino

	WifInfo

	DigiStump Oak

	Generic ESP8266 modules

	Serial Adapter

	Minimal Hardware Setup for Bootloading and Usage

	ESP to Serial

	Minimal

	Improved Stability

	Boot Messages and Modes

	Generic ESP8285 modules

	WeMos D1

	WeMos D1 mini

	ESPino (WROOM-02 Module) by ThaiEasyElec

	gen4-IoD Range by 4D Systems

	FAQ
	I am getting “espcomm_sync failed” error when trying to upload my ESP. How to resolve this issue?

	Why esptool is not listed in “Programmer” menu? How do I upload ESP without it?

	My ESP crashes running some code. How to troubleshoot it?

	This Arduino library doesn’t work on ESP. How do I make it working?

	In the IDE, for ESP-12E that has 4M flash, I can choose 4M (1M SPIFFS) or 4M (3M SPIFFS). No matter what I select, the IDE tells me the maximum code space is about 1M. Where does my flash go?

	I have observed a case when ESP.restart() doesn’t work. What is the reason for that?

	How to resolve “Board generic (platform esp8266, package esp8266) is unknown” error?

	Exception causes

	Debugging
	Introduction

	Informations

	Stack Dump
	Introduction

	Using with Eclipse
	What to Download

	Setup Arduino

	Setup Eclipse

	Eclipse wont build

	Changelog
	2.3.0

	2.2.0

	2.0.0

	1.6.4-673-g8cd3697

	1.6.4-628-g545ffde

Installing

Boards Manager

This is the suggested installation method for end users.

Prerequisites

	Arduino 1.6.8, get it from Arduino
website [https://www.arduino.cc/en/Main/OldSoftwareReleases#previous].

	Internet connection

Instructions

	Start Arduino and open Preferences window.

	Enter
http://arduino.esp8266.com/stable/package_esp8266com_index.json
into Additional Board Manager URLs field. You can add multiple
URLs, separating them with commas.

	Open Boards Manager from Tools > Board menu and find esp8266
platform.

	Select the version you need from a drop-down box.

	Click install button.

	Don’t forget to select your ESP8266 board from Tools > Board menu
after installation.

You may optionally use staging boards manager package link:
http://arduino.esp8266.com/staging/package_esp8266com_index.json.
This may contain some new features, but at the same time, some things
might be broken.

Using git version

This is the suggested installation method for contributors and library
developers.

Prerequisites

	Arduino 1.6.8 (or newer, if you know what you are doing)

	git

	python 2.7

	terminal, console, or command prompt (depending on you OS)

	Internet connection

Instructions

	Open the console and go to Arduino directory. This can be either your
sketchbook directory (usually <Documents>/Arduino), or the
directory of Arduino application itself, the choice is up to you.

	Clone this repository into hardware/esp8266com/esp8266 directory.
Alternatively, clone it elsewhere and create a symlink, if your OS
supports them.

cd hardware
mkdir esp8266com
cd esp8266com
git clone https://github.com/esp8266/Arduino.git esp8266

You should end up with the following directory structure:

Arduino
|
--- hardware
 |
 --- esp8266com
 |
 --- esp8266
 |
 --- bootloaders
 --- cores
 --- doc
 --- libraries
 --- package
 --- tests
 --- tools
 --- variants
 --- platform.txt
 --- programmers.txt
 --- README.md
 --- boards.txt
 --- LICENSE

	Download binary tools

cd esp8266/tools
python get.py

	Restart Arduino

Reference

Digital IO

Pin numbers in Arduino correspond directly to the ESP8266 GPIO pin
numbers. pinMode, digitalRead, and digitalWrite functions
work as usual, so to read GPIO2, call digitalRead(2).

Digital pins 0—15 can be INPUT, OUTPUT, or INPUT_PULLUP. Pin
16 can be INPUT, OUTPUT or INPUT_PULLDOWN_16. At startup,
pins are configured as INPUT.

Pins may also serve other functions, like Serial, I2C, SPI. These
functions are normally activated by the corresponding library. The
diagram below shows pin mapping for the popular ESP-12 module.

[image: Pin Functions]
Pin Functions

Digital pins 6—11 are not shown on this diagram because they are used to
connect flash memory chip on most modules. Trying to use these pins as
IOs will likely cause the program to crash.

Note that some boards and modules (ESP-12ED, NodeMCU 1.0) also break out
pins 9 and 11. These may be used as IO if flash chip works in DIO mode
(as opposed to QIO, which is the default one).

Pin interrupts are supported through attachInterrupt,
detachInterrupt functions. Interrupts may be attached to any GPIO
pin, except GPIO16. Standard Arduino interrupt types are supported:
CHANGE, RISING, FALLING.

Analog input

ESP8266 has a single ADC channel available to users. It may be used
either to read voltage at ADC pin, or to read module supply voltage
(VCC).

To read external voltage applied to ADC pin, use analogRead(A0).
Input voltage range is 0 — 1.0V.

To read VCC voltage, use ESP.getVcc() and ADC pin must be kept
unconnected. Additionally, the following line has to be added to the
sketch:

ADC_MODE(ADC_VCC);

This line has to appear outside of any functions, for instance right
after the #include lines of your sketch.

Analog output

analogWrite(pin, value) enables software PWM on the given pin. PWM
may be used on pins 0 to 16. Call analogWrite(pin, 0) to disable PWM
on the pin. value may be in range from 0 to PWMRANGE, which is
equal to 1023 by default. PWM range may be changed by calling
analogWriteRange(new_range).

PWM frequency is 1kHz by default. Call
analogWriteFreq(new_frequency) to change the frequency.

Timing and delays

millis() and micros() return the number of milliseconds and
microseconds elapsed after reset, respectively.

delay(ms) pauses the sketch for a given number of milliseconds and
allows WiFi and TCP/IP tasks to run. delayMicroseconds(us) pauses
for a given number of microseconds.

Remember that there is a lot of code that needs to run on the chip
besides the sketch when WiFi is connected. WiFi and TCP/IP libraries get
a chance to handle any pending events each time the loop() function
completes, OR when delay is called. If you have a loop somewhere in
your sketch that takes a lot of time (>50ms) without calling delay,
you might consider adding a call to delay function to keep the WiFi
stack running smoothly.

There is also a yield() function which is equivalent to
delay(0). The delayMicroseconds function, on the other hand,
does not yield to other tasks, so using it for delays more than 20
milliseconds is not recommended.

Serial

Serial object works much the same way as on a regular Arduino. Apart
from hardware FIFO (128 bytes for TX and RX) Serial has
additional 256-byte TX and RX buffers. Both transmit and receive is
interrupt-driven. Write and read functions only block the sketch
execution when the respective FIFO/buffers are full/empty. Note that
the length of additional 256-bit buffer can be customized.

Serial uses UART0, which is mapped to pins GPIO1 (TX) and GPIO3
(RX). Serial may be remapped to GPIO15 (TX) and GPIO13 (RX) by calling
Serial.swap() after Serial.begin. Calling swap again maps
UART0 back to GPIO1 and GPIO3.

Serial1 uses UART1, TX pin is GPIO2. UART1 can not be used to
receive data because normally it’s RX pin is occupied for flash chip
connection. To use Serial1, call Serial1.begin(baudrate).

If Serial1 is not used and Serial is not swapped - TX for UART0
can be mapped to GPIO2 instead by calling Serial.set_tx(2) after
Serial.begin or directly with
Serial.begin(baud, config, mode, 2).

By default the diagnostic output from WiFi libraries is disabled when
you call Serial.begin. To enable debug output again, call
Serial.setDebugOutput(true). To redirect debug output to Serial1
instead, call Serial1.setDebugOutput(true).

You also need to use Serial.setDebugOutput(true) to enable output
from printf() function.

The method Serial.setRxBufferSize(size_t size) allows to define the
receiving buffer depth. The default value is 256.

Both Serial and Serial1 objects support 5, 6, 7, 8 data bits,
odd (O), even (E), and no (N) parity, and 1 or 2 stop bits. To set the
desired mode, call Serial.begin(baudrate, SERIAL_8N1),
Serial.begin(baudrate, SERIAL_6E2), etc.

A new method has been implemented on both Serial and Serial1 to
get current baud rate setting. To get the current baud rate, call
Serial.baudRate(), Serial1.baudRate(). Return a int of
current speed. For example

// Set Baud rate to 57600
Serial.begin(57600);

// Get current baud rate
int br = Serial.baudRate();

// Will print "Serial is 57600 bps"
Serial.printf("Serial is %d bps", br);

Serial and Serial1 objects are both instances of the
HardwareSerial class.

I’ve done this also for official ESP8266 Software
Serial [https://github.com/esp8266/Arduino/blob/master/doc/libraries.md#softwareserial]
library, see this pull
request [https://github.com/plerup/espsoftwareserial/pull/22].

Note that this implementation is only for ESP8266 based boards,
and will not works with other Arduino boards.

Progmem

The Program memory features work much the same way as on a regular
Arduino; placing read only data and strings in read only memory and
freeing heap for your application. The important difference is that on
the ESP8266 the literal strings are not pooled. This means that the same
literal string defined inside a F("") and/or PSTR("") will take
up space for each instance in the code. So you will need to manage the
duplicate strings yourself.

There is one additional helper macro to make it easier to pass
const PROGMEM strings to methods that take a __FlashStringHelper
called FPSTR(). The use of this will help make it easier to pool
strings. Not pooling strings…

String response1;
response1 += F("http:");
...
String response2;
response2 += F("http:");

using FPSTR would become…

const char HTTP[] PROGMEM = "http:";
...
{
 String response1;
 response1 += FPSTR(HTTP);
 ...
 String response2;
 response2 += FPSTR(HTTP);
}

Libraries

WiFi(ESP8266WiFi library)

ESP8266WiFi library has been developed basing on ESP8266 SDK, using naming convention and overall functionality philosophy of the Arduino WiFi Shield library [https://www.arduino.cc/en/Reference/WiFi]. Over time the wealth Wi-Fi features ported from ESP8266 SDK to this library outgrew the APIs of WiFi Shield library and it became apparent that we need to provide separate documentation on what is new and extra.

ESP8266WiFi library documentation.

Ticker

Library for calling functions repeatedly with a certain period. Two examples [https://github.com/esp8266/Arduino/tree/master/libraries/Ticker/examples] included.

It is currently not recommended to do blocking IO operations (network, serial, file) from Ticker callback functions. Instead, set a flag inside the ticker callback and check for that flag inside the loop function.

Here is library to simplificate Ticker usage and avoid WDT reset:
TickerScheduler [https://github.com/Toshik/TickerScheduler]

EEPROM

This is a bit different from standard EEPROM class. You need to call EEPROM.begin(size) before you start reading or writing, size being the number of bytes you want to use. Size can be anywhere between 4 and 4096 bytes.

EEPROM.write does not write to flash immediately, instead you must call EEPROM.commit() whenever you wish to save changes to flash. EEPROM.end() will also commit, and will release the RAM copy of EEPROM contents.

EEPROM library uses one sector of flash located just after the SPIFFS.

Three examples [https://github.com/esp8266/Arduino/tree/master/libraries/EEPROM] included.

I2C (Wire library)

Wire library currently supports master mode up to approximately 450KHz. Before using I2C, pins for SDA and SCL need to be set by calling Wire.begin(int sda, int scl), i.e. Wire.begin(0, 2) on ESP-01, else they default to pins 4(SDA) and 5(SCL).

SPI

SPI library supports the entire Arduino SPI API including transactions, including setting phase (CPHA). Setting the Clock polarity (CPOL) is not supported, yet (SPI_MODE2 and SPI_MODE3 not working).

The usual SPI pins are:

	MOSI = GPIO13

	MISO = GPIO12

	SCLK = GPIO14

There’s an extended mode where you can swap the normal pins to the SPI0 hardware pins.
This is enabled by calling SPI.pins(6, 7, 8, 0) before the call to SPI.begin(). The pins would
change to:

	MOSI = SD1

	MISO = SD0

	SCLK = CLK

	HWCS = GPIO0

This mode shares the SPI pins with the controller that reads the program code from flash and is
controlled by a hardware arbiter (the flash has always higher priority). For this mode the CS
will be controlled by hardware as you can’t handle the CS line with a GPIO, you never actually
know when the arbiter is going to grant you access to the bus so you must let it handle CS
automatically.

SoftwareSerial

An ESP8266 port of SoftwareSerial library done by Peter Lerup (@plerup) supports baud rate up to 115200 and multiples SoftwareSerial instances. See https://github.com/plerup/espsoftwareserial if you want to suggest an improvement or open an issue related to SoftwareSerial.

ESP-specific APIs

Some ESP-specific APIs related to deep sleep, RTC and flash memories are available in the ESP object.

ESP.deepSleep(microseconds, mode) will put the chip into deep sleep. mode is one of WAKE_RF_DEFAULT, WAKE_RFCAL, WAKE_NO_RFCAL, WAKE_RF_DISABLED. (GPIO16 needs to be tied to RST to wake from deepSleep.)

ESP.rtcUserMemoryWrite(offset, &data, sizeof(data)) and ESP.rtcUserMemoryRead(offset, &data, sizeof(data)) allow data to be stored in and retrieved from the RTC user memory of the chip respectively. Total size of RTC user memory is 512 bytes, so offset + sizeof(data) shouldn’t exceed 512. Data should be 4-byte aligned. The stored data can be retained between deep sleep cycles. However, the data might be lost after power cycling the chip.

ESP.restart() restarts the CPU.

ESP.getResetReason() returns a String containing the last reset reason in human readable format.

ESP.getFreeHeap() returns the free heap size.

ESP.getChipId() returns the ESP8266 chip ID as a 32-bit integer.

ESP.getCoreVersion() returns a String containing the core version.

ESP.getSdkVersion() returns the SDK version as a char.

ESP.getCpuFreqMHz() returns the CPU frequency in MHz as an unsigned 8-bit integer.

ESP.getSketchSize() returns the size of the current sketch as an unsigned 32-bit integer.

ESP.getFreeSketchSpace() returns the free sketch space as an unsigned 32-bit integer.

ESP.getSketchMD5() returns a lowercase String containing the MD5 of the current sketch.

ESP.getFlashChipId() returns the flash chip ID as a 32-bit integer.

ESP.getFlashChipSize() returns the flash chip size, in bytes, as seen by the SDK (may be less than actual size).

ESP.getFlashChipRealSize() returns the real chip size, in bytes, based on the flash chip ID.

ESP.getFlashChipSpeed(void) returns the flash chip frequency, in Hz.

ESP.getCycleCount() returns the cpu instruction cycle count since start as an unsigned 32-bit. This is useful for accurate timing of very short actions like bit banging.

ESP.getVcc() may be used to measure supply voltage. ESP needs to reconfigure the ADC at startup in order for this feature to be available. Add the following line to the top of your sketch to use getVcc:

ADC_MODE(ADC_VCC);

TOUT pin has to be disconnected in this mode.

Note that by default ADC is configured to read from TOUT pin using analogRead(A0), and ESP.getVCC() is not available.

mDNS and DNS-SD responder (ESP8266mDNS library)

Allows the sketch to respond to multicast DNS queries for domain names like “foo.local”, and DNS-SD (service discovery) queries. See attached example for details.

SSDP responder (ESP8266SSDP)

SSDP is another service discovery protocol, supported on Windows out of the box. See attached example for reference.

DNS server (DNSServer library)

Implements a simple DNS server that can be used in both STA and AP modes. The DNS server currently supports only one domain (for all other domains it will reply with NXDOMAIN or custom status code). With it, clients can open a web server running on ESP8266 using a domain name, not an IP address.

Servo

This library exposes the ability to control RC (hobby) servo motors. It will support upto 24 servos on any available output pin. By defualt the first 12 servos will use Timer0 and currently this will not interfere with any other support. Servo counts above 12 will use Timer1 and features that use it will be effected. While many RC servo motors will accept the 3.3V IO data pin from a ESP8266, most will not be able to run off 3.3v and will require another power source that matches their specifications. Make sure to connect the grounds between the ESP8266 and the servo motor power supply.

Other libraries (not included with the IDE)

Libraries that don’t rely on low-level access to AVR registers should work well. Here are a few libraries that were verified to work:

	Adafruit_ILI9341 [https://github.com/Links2004/Adafruit_ILI9341] - Port of the Adafruit ILI9341 for the ESP8266

	arduinoVNC [https://github.com/Links2004/arduinoVNC] - VNC Client for Arduino

	arduinoWebSockets [https://github.com/Links2004/arduinoWebSockets] - WebSocket Server and Client compatible with ESP8266 (RFC6455)

	aREST [https://github.com/marcoschwartz/aREST] - REST API handler library.

	Blynk [https://github.com/blynkkk/blynk-library] - easy IoT framework for Makers (check out the Kickstarter page [http://tiny.cc/blynk-kick]).

	DallasTemperature [https://github.com/milesburton/Arduino-Temperature-Control-Library.git]

	DHT-sensor-library [https://github.com/adafruit/DHT-sensor-library] - Arduino library for the DHT11/DHT22 temperature and humidity sensors. Download latest v1.1.1 library and no changes are necessary. Older versions should initialize DHT as follows: DHT dht(DHTPIN, DHTTYPE, 15)

	DimSwitch [https://github.com/krzychb/DimSwitch] - Control electronic dimmable ballasts for fluorescent light tubes remotely as if using a wall switch.

	Encoder [https://github.com/PaulStoffregen/Encoder] - Arduino library for rotary encoders. Version 1.4 supports ESP8266.

	esp8266_mdns [https://github.com/mrdunk/esp8266_mdns] - mDNS queries and responses on esp8266. Or to describe it another way: An mDNS Client or Bonjour Client library for the esp8266.

	ESPAsyncTCP [https://github.com/me-no-dev/ESPAsyncTCP] - Asynchronous TCP Library for ESP8266 and ESP32/31B

	ESPAsyncWebServer [https://github.com/me-no-dev/ESPAsyncWebServer] - Asynchronous Web Server Library for ESP8266 and ESP32/31B

	Homie for ESP8266 [https://github.com/marvinroger/homie-esp8266] - Arduino framework for ESP8266 implementing Homie, an MQTT convention for the IoT.

	NeoPixel [https://github.com/adafruit/Adafruit_NeoPixel] - Adafruit’s NeoPixel library, now with support for the ESP8266 (use version 1.0.2 or higher from Arduino’s library manager).

	NeoPixelBus [https://github.com/Makuna/NeoPixelBus] - Arduino NeoPixel library compatible with ESP8266. Use the “DmaDriven” or “UartDriven” branches for ESP8266. Includes HSL color support and more.

	PubSubClient [https://github.com/Imroy/pubsubclient] - MQTT library by @Imroy.

	RTC [https://github.com/Makuna/Rtc] - Arduino Library for Ds1307 & Ds3231 compatible with ESP8266.

	Souliss, Smart Home [https://github.com/souliss/souliss] - Framework for Smart Home based on Arduino, Android and openHAB.

	ST7735 [https://github.com/nzmichaelh/Adafruit-ST7735-Library] - Adafruit’s ST7735 library modified to be compatible with ESP8266. Just make sure to modify the pins in the examples as they are still AVR specific.

	Task [https://github.com/Makuna/Task] - Arduino Nonpreemptive multitasking library. While similiar to the included Ticker library in the functionality provided, this library was meant for cross Arduino compatibility.

	TickerScheduler [https://github.com/Toshik/TickerScheduler] - Library provides simple scheduler for Ticker to avoid WDT reset

	Teleinfo [https://github.com/hallard/LibTeleinfo] - Generic French Power Meter library to read Teleinfo energy monitoring data such as consuption, contract, power, period, … This library is cross platform, ESP8266, Arduino, Particle, and simple C++. French dedicated post [https://hallard.me/libteleinfo/] on author’s blog and all related information about Teleinfo [https://hallard.me/category/tinfo/] also available.

	UTFT-ESP8266 [https://github.com/gnulabis/UTFT-ESP8266] - UTFT display library with support for ESP8266. Only serial interface (SPI) displays are supported for now (no 8-bit parallel mode, etc). Also includes support for the hardware SPI controller of the ESP8266.

	WiFiManager [https://github.com/tzapu/WiFiManager] - WiFi Connection manager with web captive portal. If it can’t connect, it starts AP mode and a configuration portal so you can choose and enter WiFi credentials.

	OneWire [https://github.com/PaulStoffregen/OneWire] - Library for Dallas/Maxim 1-Wire Chips.

	Adafruit-PCD8544-Nokia-5110-LCD-Library [https://github.com/WereCatf/Adafruit-PCD8544-Nokia-5110-LCD-library] - Port of the Adafruit PCD8544 - library for the ESP8266.

	PCF8574_ESP [https://github.com/WereCatf/PCF8574_ESP] - A very simplistic library for using the PCF857//PCF8574A I2C 8-pin GPIO-expander.

	Dot Matrix Display Library 2 [https://github.com/freetronics/DMD2] - Freetronics DMD & Generic 16 x 32 P10 style Dot Matrix Display Library

	SdFat-beta [https://github.com/greiman/SdFat-beta] - SD-card library with support for long filenames, software- and hardware-based SPI and lots more.

	FastLED [https://github.com/FastLED/FastLED] - a library for easily & efficiently controlling a wide variety of LED chipsets, like the Neopixel (WS2812B), DotStar, LPD8806 and many more. Includes fading, gradient, color conversion functions.

	OLED [https://github.com/klarsys/esp8266-OLED] - a library for controlling I2C connected OLED displays. Tested with 0.96 inch OLED graphics display.

	MFRC522 [https://github.com/miguelbalboa/rfid] - A library for using the Mifare RC522 RFID-tag reader/writer.

	Ping [https://github.com/dancol90/ESP8266Ping] - lets the ESP8266 ping a remote machine.

	AsyncPing [https://github.com/akaJes/AsyncPing] - fully asynchronous Ping library (have full ping statistic and hardware MAC address).

Filesystem

Flash layout

Even though file system is stored on the same flash chip as the program,
programming new sketch will not modify file system contents. This allows
to use file system to store sketch data, configuration files, or content
for Web server.

The following diagram illustrates flash layout used in Arduino
environment:

|--------------|-------|---------------|--|--|--|--|--|
^ ^ ^ ^ ^
Sketch OTA update File system EEPROM WiFi config (SDK)

File system size depends on the flash chip size. Depending on the board
which is selected in IDE, you have the following options for flash size:

	Board

	Flash chip size, bytes

	File system size, bytes

	Generic module

	512k

	64k, 128k

	Generic module

	1M

	64k, 128k, 256k, 512k

	Generic module

	2M

	1M

	Generic module

	4M

	3M

	Adafruit HUZZAH

	4M

	1M, 3M

	ESPresso Lite 1.0

	4M

	1M, 3M

	ESPresso Lite 2.0

	4M

	1M, 3M

	NodeMCU 0.9

	4M

	1M, 3M

	NodeMCU 1.0

	4M

	1M, 3M

	Olimex MOD-WIFI-ESP8266(-DEV)

	2M

	1M

	SparkFun Thing

	512k

	64k

	SweetPea ESP-210

	4M

	1M, 3M

	WeMos D1 & D1 mini

	4M

	1M, 3M

	ESPDuino

	4M

	1M, 3M

Note: to use any of file system functions in the sketch, add the
following include to the sketch:

#include "FS.h"

File system limitations

The filesystem implementation for ESP8266 had to accomodate the
constraints of the chip, among which its limited RAM.
SPIFFS [https://github.com/pellepl/spiffs] was selected because it
is designed for small systems, but that comes at the cost of some
simplifications and limitations.

First, behind the scenes, SPIFFS does not support directories, it just
stores a “flat” list of files. But contrary to traditional filesystems,
the slash character '/' is allowed in filenames, so the functions
that deal with directory listing (e.g. openDir("/website"))
basically just filter the filenames and keep the ones that start with
the requested prefix (/website/). Practically speaking, that makes
little difference though.

Second, there is a limit of 32 chars in total for filenames. One
'\0' char is reserved for C string termination, so that leaves us
with 31 usable characters.

Combined, that means it is advised to keep filenames short and not use
deeply nested directories, as the full path of each file (including
directories, '/' characters, base name, dot and extension) has to be
31 chars at a maximum. For example, the filename
/website/images/bird_thumbnail.jpg is 34 chars and will cause some
problems if used, for example in exists() or in case another file
starts with the same first 31 characters.

Warning: That limit is easily reached and if ignored, problems might
go unnoticed because no error message will appear at compilation nor
runtime.

For more details on the internals of SPIFFS implementation, see the
SPIFFS readme
file [https://github.com/esp8266/Arduino/blob/master/cores/esp8266/spiffs/README.md].

Uploading files to file system

ESP8266FS is a tool which integrates into the Arduino IDE. It adds a
menu item to Tools menu for uploading the contents of sketch data
directory into ESP8266 flash file system.

	Download the tool: https://github.com/esp8266/arduino-esp8266fs-plugin/releases/download/0.3.0/ESP8266FS-0.3.0.zip.

	In your Arduino sketchbook directory, create tools directory if
it doesn’t exist yet

	Unpack the tool into tools directory (the path will look like
<home_dir>/Arduino/tools/ESP8266FS/tool/esp8266fs.jar)

	Restart Arduino IDE

	Open a sketch (or create a new one and save it)

	Go to sketch directory (choose Sketch > Show Sketch Folder)

	Create a directory named data and any files you want in the file
system there

	Make sure you have selected a board, port, and closed Serial Monitor

	Select Tools > ESP8266 Sketch Data Upload. This should start
uploading the files into ESP8266 flash file system. When done, IDE
status bar will display SPIFFS Image Uploaded message.

File system object (SPIFFS)

begin

SPIFFS.begin()

This method mounts SPIFFS file system. It must be called before any
other FS APIs are used. Returns true if file system was mounted
successfully, false otherwise.

end

SPIFFS.end()

This method unmounts SPIFFS file system. Use this method before updating
SPIFFS using OTA.

format

SPIFFS.format()

Formats the file system. May be called either before or after calling
begin. Returns true if formatting was successful.

open

SPIFFS.open(path, mode)

Opens a file. path should be an absolute path starting with a slash
(e.g. /dir/filename.txt). mode is a string specifying access
mode. It can be one of “r”, “w”, “a”, “r+”, “w+”, “a+”. Meaning of these
modes is the same as for fopen C function.

r Open text file for reading. The stream is positioned at the
 beginning of the file.

r+ Open for reading and writing. The stream is positioned at the
 beginning of the file.

w Truncate file to zero length or create text file for writing.
 The stream is positioned at the beginning of the file.

w+ Open for reading and writing. The file is created if it does
 not exist, otherwise it is truncated. The stream is
 positioned at the beginning of the file.

a Open for appending (writing at end of file). The file is
 created if it does not exist. The stream is positioned at the
 end of the file.

a+ Open for reading and appending (writing at end of file). The
 file is created if it does not exist. The initial file
 position for reading is at the beginning of the file, but
 output is always appended to the end of the file.

Returns File object. To check whether the file was opened
successfully, use the boolean operator.

File f = SPIFFS.open("/f.txt", "w");
if (!f) {
 Serial.println("file open failed");
}

exists

SPIFFS.exists(path)

Returns true if a file with given path exists, false otherwise.

openDir

SPIFFS.openDir(path)

Opens a directory given its absolute path. Returns a Dir object.

remove

SPIFFS.remove(path)

Deletes the file given its absolute path. Returns true if file was
deleted successfully.

rename

SPIFFS.rename(pathFrom, pathTo)

Renames file from pathFrom to pathTo. Paths must be absolute.
Returns true if file was renamed successfully.

info

FSInfo fs_info;
SPIFFS.info(fs_info);

Fills FSInfo structure with
information about the file system. Returns true is successful,
false otherwise.

Filesystem information structure

struct FSInfo {
 size_t totalBytes;
 size_t usedBytes;
 size_t blockSize;
 size_t pageSize;
 size_t maxOpenFiles;
 size_t maxPathLength;
};

This is the structure which may be filled using FS::info method. -
totalBytes — total size of useful data on the file system -
usedBytes — number of bytes used by files - blockSize — SPIFFS
block size - pageSize — SPIFFS logical page size - maxOpenFiles
— max number of files which may be open simultaneously -
maxPathLength — max file name length (including one byte for zero
termination)

Directory object (Dir)

The purpose of Dir object is to iterate over files inside a directory.
It provides three methods: next(), fileName(), and
openFile(mode).

The following example shows how it should be used:

Dir dir = SPIFFS.openDir("/data");
while (dir.next()) {
 Serial.print(dir.fileName());
 File f = dir.openFile("r");
 Serial.println(f.size());
}

dir.next() returns true while there are files in the directory to
iterate over. It must be called before calling fileName and
openFile functions.

openFile method takes mode argument which has the same meaning as
for SPIFFS.open function.

File object

SPIFFS.open and dir.openFile functions return a File object.
This object supports all the functions of Stream, so you can use
readBytes, findUntil, parseInt, println, and all other
Stream methods.

There are also some functions which are specific to File object.

seek

file.seek(offset, mode)

This function behaves like fseek C function. Depending on the value
of mode, it moves current position in a file as follows:

	if mode is SeekSet, position is set to offset bytes from
the beginning.

	if mode is SeekCur, current position is moved by offset
bytes.

	if mode is SeekEnd, position is set to offset bytes from
the end of the file.

Returns true if position was set successfully.

position

file.position()

Returns the current position inside the file, in bytes.

size

file.size()

Returns file size, in bytes.

name

String name = file.name();

Returns file name, as const char*. Convert it to String for
storage.

close

file.close()

Close the file. No other operations should be performed on File object
after close function was called.

ESP8266WiFi library

ESP8266 is all about Wi-Fi. If you are eager to connect your new ESP8266 module to Wi-Fi network to start sending and receiving data, this is a good place to start. If you are looking for more in depth details of how to program specific Wi-Fi networking functionality, you are also in the right place.

Introduction

The Wi-Fi library for ESP8266 [https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi] has been developed basing on ESP8266 SDK [http://bbs.espressif.com/viewtopic.php?f=51&t=1023], using naming convention and overall functionality philosophy of Arduino WiFi library [https://www.arduino.cc/en/Reference/WiFi]. Over time the wealth Wi-Fi features ported from ESP9266 SDK to esp8266 /
Adruino [https://github.com/esp8266/Arduino] outgrow Arduino WiFi library [https://www.arduino.cc/en/Reference/WiFi] and it became apparent that we need to provide separate documentation on what is new and extra.

This documentation will walk you through several classes, methods and properties of ESP8266WiFi [https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi] library. If you are new to C++ and Arduino, don’t worry. We will start from general concepts and then move to detailed description of members of each particular class including usage examples.

The scope of functionality offered by ESP8266WiFi [https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi] library is quite extensive and therefore this description has been broken up into separate documents marked with :arrow_right:.

Quick Start

Hopefully you are already familiar how to load Blink.ino [https://github.com/esp8266/Arduino/blob/master/libraries/esp8266/examples/Blink/Blink.ino] sketch to ESP8266 module and get the LED blinking. If not, please check this tutorial [https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout/using-arduino-ide] by Adafruit or another great tutorial [https://learn.sparkfun.com/tutorials/esp8266-thing-hookup-guide/introduction] developed by Sparkfun.

To hook up ESP module to Wi-Fi (like hooking up a mobile phone to a hot spot), you need just couple of lines of code:

#include <ESP8266WiFi.h>

void setup()
{
 Serial.begin(115200);
 Serial.println();

 WiFi.begin("network-name", "pass-to-network");

 Serial.print("Connecting");
 while (WiFi.status() != WL_CONNECTED)
 {
 delay(500);
 Serial.print(".");
 }
 Serial.println();

 Serial.print("Connected, IP address: ");
 Serial.println(WiFi.localIP());
}

void loop() {}

In the line WiFi.begin("network-name", "pass-to-network") replace network-name and pass-to-network with name and password to the Wi-Fi network you like to connect. Then upload this sketch to ESP module and open serial monitor. You should see something like:

[image: Connection log on Arduino IDE's Serial Monitor]
alt text

How does it work? In the first line of sketch #include <ESP8266WiFi.h> we are including ESP8266WiFi [https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi] library. This library provides ESP8266 specific Wi-Fi routines we are calling to connect to network.

Actual connection to Wi-Fi is initialized by calling:

WiFi.begin("network-name", "pass-to-network");

Connection process can take couple of seconds and we are checking for this to complete in the following loop:

while (WiFi.status() != WL_CONNECTED)
{
 delay(500);
 Serial.print(".");
}

The while() loop will keep looping while WiFi.status() is other than WL_CONNECTED. The loop will exit only if the status changes to WL_CONNECTED.

The last line will then print out IP address assigned to ESP module by DHCP [http://whatismyipaddress.com/dhcp]:

Serial.println(WiFi.localIP());

If you don’t see the last line but just more and more dots, then likely name or password to the Wi-Fi network in sketch is entered incorrectly. Verify name and password by connecting from scratch to this Wi-Fi a PC or a mobile phone.

Note: if connection is established, and then lost for some reason, ESP will automatically reconnect to last used access point once it is again back on-line. This will be done automatically by Wi-Fi library, without any user intervention.

That’s all you need to connect ESP8266 to Wi-Fi. In the following chapters we will explain what cool things can be done by ESP once connected.

Who is Who

Devices that connect to Wi-Fi network are called stations (STA). Connection to Wi-Fi is provided by an access point (AP), that acts as a hub for one or more stations. The access point on the other end is connected to a wired network. An access point is usually integrated with a router to provide access from Wi-Fi network to the internet. Each access point is recognized by a SSID (Service Set IDentifier), that essentially is the name of network you select when connecting a device (station) to the Wi-Fi.

ESP8266 module can operate as a station, so we can connect it to the Wi-Fi network. It can also operate as a soft access point (soft-AP), to establish its own Wi-Fi network. Therefore we can connect other stations to such ESP module. ESP8266 is also able to operate both in station and soft access point mode. This provides possibility of building e.g. mesh networks [https://en.wikipedia.org/wiki/Mesh_networking].

[image: ESP8266 operating in the Station + Soft Access Point mode]
alt text

The ESP8266WiFi [https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi] library provides wide collection of C++
methods [https://en.wikipedia.org/wiki/Method_(computer_programming)] (functions) and properties [https://en.wikipedia.org/wiki/Property_(programming)] to configure and operate an ESP8266 module in station and / or soft access point mode. They are described in the following chapters.

Class Description

The ESP8266WiFi [https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi] library is broken up into several classes. In most of cases, when writing the code, user is not concerned with this classification. We are using it to break up description of this library into more manageable pieces.

[image: Index of classes of ESP8266WiFi library]
alt text

Chapters below describe all function calls (methods [https://en.wikipedia.org/wiki/Method_(computer_programming)] and properties [https://en.wikipedia.org/wiki/Property_(programming)] in C++ terms) listed in particular classes of ESP8266WiFi [https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi]. Description is illustrated with application examples and code snippets to show how to use functions in practice. Most of this information is broken up into separate documents. Please follow to access them.

Station

Station (STA) mode is used to get ESP module connected to a Wi-Fi network established by an access point.

[image: ESP8266 operating in the Station mode]
alt text

Station class has several features to facilitate management of Wi-Fi connection. In case the connection is lost, ESP8266 will automatically reconnect to the last used access point, once it is again available. The same happens on module reboot. This is possible since ESP is saving credentials to last used access point in flash (non-volatile) memory. Using the saved data ESP will also reconnect if sketch has been changed but code does not alter the Wi-Fi mode or credentials.

Station Class documentation

Check out separate section with examples.

Soft Access Point

An access point (AP) [https://en.wikipedia.org/wiki/Wireless_access_point] is a device that provides access to Wi-Fi network to other devices (stations)
and connects them further to a wired network. ESP8266 can provide similar functionality except it does not have interface to a wired network. Such mode of operation is called soft access point (soft-AP). The maximum number of stations connected to the soft-AP is five.

[image: ESP8266 operating in the Soft Access Point mode]
alt text

The soft-AP mode is often used and an intermediate step before connecting ESP to a Wi-Fi in a station mode. This is when SSID and password to such network is not known upfront. ESP first boots in soft-AP mode, so we can connect to it using a laptop or a mobile phone. Then we are able to provide credentials to the target network. Once done ESP is switched to the station mode and can connect to the target Wi-Fi.

Another handy application of soft-AP mode is to set up mesh networks [https://en.wikipedia.org/wiki/Mesh_networking]. ESP can operate in both soft-AP and Station mode so it can act as a node of a mesh network.

Soft Access Point Class documentation

Check out separate section with examples.

Scan

To connect a mobile phone to a hot spot, you typically open Wi-Fi settings app, list available networks and pick the hot spot you need. Then enter a password (or not) and you are in. You can do the same with ESP. Functionality of scanning for, and listing of available networks in range is implemented by the Scan Class.

Scan Class documentation.

Check out separate section with examples.

Client

The Client class creates clients [https://en.wikipedia.org/wiki/Client_(computing)] that can access services provided by servers [https://en.wikipedia.org/wiki/Server_(computing)] in order to send, receive and process data.

[image: ESP8266 operating as the Client]
alt text

Check out separate section with examples / list of functions

Client Secure

The Client Secure is an extension of Client Class where connection and data exchange with servers is done using a secure protocol [https://en.wikipedia.org/wiki/Transport_Layer_Security]. It supports TLS 1.1 [https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.1]. The TLS 1.2 [https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.2] is not supported.

[image: ESP8266 operating as the Client Secure]
alt text

Secure applications have additional memory (and processing) overhead due to the need to run cryptography algorithms. The stronger the certificate’s key, the more overhead is needed. In practice it is not possible to run more than a single secure client at a time. The problem concerns RAM memory we can not add, the flash memory size is usually not the issue. If you like to learn how client secure library [https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/src/WiFiClientSecure.h] has been developed, access to what servers have been tested, and how memory limitations have been overcame, read fascinating issue report #43 [https://github.com/esp8266/Arduino/issues/43].

Check out separate section with examples / list of functions

Server

The Server Class creates servers [https://en.wikipedia.org/wiki/Server_(computing)] that provide functionality to other programs or devices, called clients [https://en.wikipedia.org/wiki/Client_(computing)].

[image: ESP8266 operating as the Server]
alt text

Clients connect to sever to send and receive data and access provided functionality.

Check out separate section with examples / list of functions.

UDP

The UDP Class enables the User Datagram Protocol (UDP) [https://en.wikipedia.org/wiki/User_Datagram_Protocol] messages to be sent and received. The UDP uses a simple “fire and forget” transmission model with no guarantee of delivery, ordering, or duplicate protection. UDP provides checksums for data integrity, and port numbers for addressing different functions at the source and destination of the datagram.

Check out separate section with examples / list of functions.

Generic

There are several functions offered by ESP8266’s SDK [http://bbs.espressif.com/viewtopic.php?f=51&t=1023] and not present in Arduino WiFi library [https://www.arduino.cc/en/Reference/WiFi]. If such function does not fit into one of classes discussed above, it will likely be in Generic Class. Among them is handler to manage Wi-Fi events like connection, disconnection or obtaining an IP, Wi-Fi mode changes, functions to manage module sleep mode, hostname to an IP address resolution, etc.

Check out separate section with examples / list of functions.

Diagnostics

There are several techniques available to diagnose and troubleshoot issues with getting connected to Wi-Fi and keeping connection alive.

Check Return Codes

Almost each function described in chapters above returns some diagnostic information.

Such diagnostic may be provided as a simple boolean type true' orfalse` to indicate operation result. You may check this result as described in examples, for instance:

Serial.printf("Wi-Fi mode set to WIFI_STA %s\n", WiFi.mode(WIFI_STA) ? "" : "Failed!");

Some functions provide more than just a binary status information. A good example is WiFi.status().

Serial.printf("Connection status: %d\n", WiFi.status());

This function returns following codes to describe what is going on with Wi-Fi connection:

	0 : WL_IDLE_STATUS when Wi-Fi is in process of changing between statuses

	1 : WL_NO_SSID_AVAILin case configured SSID cannot be reached

	3 : WL_CONNECTED after successful connection is established

	4 : WL_CONNECT_FAILED if password is incorrect

	6 : WL_DISCONNECTED if module is not configured in station mode

It is a good practice to display and check information returned by functions. Application development and troubleshooting will be easier with that.

Use printDiag

There is a specific function available to print out key Wi-Fi diagnostic information:

WiFi.printDiag(Serial);

A sample output of this function looks as follows:

Mode: STA+AP
PHY mode: N
Channel: 11
AP id: 0
Status: 5
Auto connect: 1
SSID (10): sensor-net
Passphrase (12): 123!$#0&*esP
BSSID set: 0

Use this function to provide snapshot of Wi-Fi status in these parts of application code, that you suspect may be failing.

Enable Wi-Fi Diagnostic

By default the diagnostic output from Wi-Fi libraries is disabled when you call Serial.begin. To enable debug output again, call Serial.setDebugOutput(true). To redirect debug output to Serial1 instead, call Serial1.setDebugOutput(true). For additional details regarding diagnostics using serial ports please refer to the documentation.

Below is an example of output for sample sketch discussed in Quick Start above with Serial.setDebugOutput(true):

Connectingscandone
state: 0 -> 2 (b0)
state: 2 -> 3 (0)
state: 3 -> 5 (10)
add 0
aid 1
cnt

connected with sensor-net, channel 6
dhcp client start...
chg_B1:-40
...ip:192.168.1.10,mask:255.255.255.0,gw:192.168.1.9
.
Connected, IP address: 192.168.1.10

The same sketch without Serial.setDebugOutput(true) will print out only the following:

Connecting....
Connected, IP address: 192.168.1.10

Enable Debugging in IDE

Arduino IDE provides convenient method to enable debugging [https://github.com/esp8266/Arduino/blob/master/doc/Troubleshooting/debugging.md] for specific libraries.

What’s Inside?

If you like to analyze in detail what is inside of the ESP8266WiFi library, go directly to the ESP8266WiFi [https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi/src] folder of esp8266 / Arduino repository on the GitHub.

To make the analysis easier, rather than looking into individual header or source files, use one of free tools to automatically generate documentation. The class index in chapter Class Description above has been prepared in no time using great Doxygen [http://www.stack.nl/~dimitri/doxygen/], that is the de facto standard tool for generating documentation from annotated C++ sources.

[image: Example of documentation prepared by Doxygen]
alt text

The tool crawls through all header and source files collecting information from formatted comment blocks. If developer of particular class annotated the code, you will see it like in examples below.

[image: Example of documentation for station begin method by Doxygen]
alt text

[image: Example of documentation for station hostname propert by Doxygen]
alt text

If code is not annotated, you will still see the function prototype including types of arguments, and can use provided links to jump straight to the source code to check it out on your own. Doxygen provides really excellent navigation between members of library.

[image: Example of documentation for UDP begin method (not annotaed in code)by Doxygen]
alt text

Several classes of ESP8266WiFi [https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi] are not annotated. When preparing this document, Doxygen [http://www.stack.nl/~dimitri/doxygen/] has been tremendous help to quickly navigate through almost 30 files that make this library.

OTA Updates

Introduction

OTA (Over the Air) update is the process of loading the firmware to ESP module using Wi-Fi connection rather than a serial port. Such functionality became extremely useful in case of limited or no physical access to the module.

OTA may be done using:

	Arduino IDE

	Web Browser

	HTTP Server

Arduino IDE option is intended primarily for software development phase. The two other options would be more useful after deployment, to provide module with application updates manually with a web browser, or automatically using a http server.

In any case, the first firmware upload has to be done over a serial port. If the OTA routines are correctly implemented in a sketch, then all subsequent uploads may be done over the air.

There is no imposed security on OTA process from being hacked. It is up to developer to ensure that updates are allowed only from legitimate / trusted sources. Once the update is complete, the module restarts, and the new code is executed. The developer should ensure that the application running on the module is shut down and restarted in a safe manner. Chapters below provide additional information regarding security and safety of OTA process.

Security

Module has to be exposed wirelessly to get it updated with a new sketch. That poses chances of module being violently hacked and loaded with some other code. To reduce likelihood of being hacked consider protecting your uploads with a password, selecting certain OTA port, etc.

Check functionality provided with ArduinoOTA [https://github.com/esp8266/Arduino/tree/master/libraries/ArduinoOTA] library that may improve security:

void setPort(uint16_t port);
void setHostname(const char* hostname);
void setPassword(const char* password);

Certain protection functionality is already built in and do not require any additional coding by developer. ArduinoOTA [https://github.com/esp8266/Arduino/tree/master/libraries/ArduinoOTA] and espota.py use Digest-MD5 [https://en.wikipedia.org/wiki/Digest_access_authentication] to authenticate upload. Integrity of transferred data is verified on ESP side using MD5 [https://en.wikipedia.org/wiki/MD5] checksum.

Make your own risk analysis and depending on application decide what library functions to implement. If required, consider implementation of other means of protection from being hacked, e.g. exposing module for uploads only according to specific schedule, trigger OTA only be user pressing dedicated “Update” button wired to ESP, etc.

Safety

OTA process takes ESP’s resources and bandwidth during upload. Then module is restarted and a new sketch executed. Analyse and test how it affects functionality of existing and new sketch.

If ESP is placed in remote location and controlling some equipment, you should put additional attention what happens if operation of this equipment is suddenly interrupted by update process. Therefore, decide how to put this equipment into safe state before starting the update. For instance, your module may be controlling a garden watering system in a sequence. If this sequence is not properly shut down and a water valve left open, your garden may be flooded.

The following functions are provided with ArduinoOTA [https://github.com/esp8266/Arduino/tree/master/libraries/ArduinoOTA] library and intended to handle functionality of your application during specific stages of OTA, or on an OTA error:

void onStart(OTA_CALLBACK(fn));
void onEnd(OTA_CALLBACK(fn));
void onProgress(OTA_CALLBACK_PROGRESS(fn));
void onError(OTA_CALLBACK_ERROR (fn));

Basic Requirements

Flash chip size should be able to hold the old sketch (currently running) and the new sketch (OTA) at the same time.

Keep in mind that the File system and EEPROM for example needs space too (one time) see flash layout.

ESP.getFreeSketchSpace();

can be used for checking the free space for the new sketch.

For overview of memory layout, where new sketch is stored and how it is copied during OTA process, see Update process - memory view.

The following chapters provide more details and specific methods of doing OTA.

Arduino IDE

Uploading modules wirelessly from Arduino IDE is intended for the following typical scenarios: - during firmware development as a quicker alternative to loading over a serial, - for updating small quantity of modules, - only if modules are available on the same network as the computer with Arduino IDE.

Requirements

	The ESP and the computer must be connected to the same network.

Application Example

Instructions below show configuration of OTA on NodeMCU 1.0 (ESP-12E Module) board. You can use any other board assuming that it meets requirements described above. This instruction is valid for all operating systems supported by Arduino IDE. Screen captures have been made on Windows 7 and you may see small differences (like name of serial port), if you are using Linux and MacOS.

	Before you begin, please make sure that you have the following s/w
installed:

	Arduino IDE 1.6.7 or newer -
https://www.arduino.cc/en/Main/Software

	esp8266/Arduino platform package 2.0.0 or newer - for instructions
follow
https://github.com/esp8266/Arduino#installing-with-boards-manager

	Python 2.7 - https://www.python.org/

Note: Windows users should select “Add python.exe to Path”
(see below – this option is not selected by default).

[image: Python installation set up]

	Now prepare the sketch and configuration for the upload over a serial
port.

	Start Arduino IDE and load sketch BasicOTA.ino available under
File > Examples > ArduinoOTA [image: ota sketch selection]

	Update SSID and password in the sketch, so the module can join
your Wi-Fi network [image: ota ssid pass entry]

	Configure upload parameters as below (you may need to adjust
configuration if you are using a different module): [image: ota serial upload config]

Note: Depending on version of platform package and board you
have, you may see Upload Using: in the menu above. This option
is inactive and it does not matter what you select. It has been
left for compatibility with older implementation of OTA and
finally removed in platform package version 2.2.0.

	Upload the sketch (Ctrl+U). Once done, open Serial Monitor
(Ctrl+Shift+M) and check if module has joined your Wi-Fi network:

[image: Check if module joined network]

Note: ESP module should be reset after serial upload. Otherwise subsequent steps will not work. Reset may be done automatically for you after opening serial monitor as visible on the screenshot above. It depends on how you have DTR and RTS wired from USB-Serial converter to the ESP. If reset is not done automatically, then do it by pressing reset button or manually cycling the power. For more details why this should be done please refer to FAQ regarding ESP.restart().

	Only if module is connected to network, after a couple of seconds,
the esp8266-ota port will show up in Arduino IDE. Select port with IP
address shown in the Serial Monitor window in previous step:

[image: Selection of OTA port]

Note: If OTA port does not show up, exit Arduino IDE, open it
again and check if port is there. If it does not help, check your
firewall and router settings. OTA port is advertised using mDNS
service. To check if port is visible by your PC, you can use
application like Bonjour Browser.

	Now get ready for your first OTA upload by selecting the OTA port:

[image: Configuration of OTA upload]

Note: The menu entry Upload Speed: does not matter at this
point as it concerns the serial port. Just left it unchanged.

	If you have successfully completed all the above steps, you can
upload (Ctrl+U) the same (or any other) sketch over OTA:

[image: OTA upload complete]

Note: To be able to upload your sketch over and over again using OTA, you need to embed OTA routines inside. Please use BasicOTA.ino as an example.

Password Protection

Protecting your OTA uploads with password is really straightforward. All you need to do, is to include the following statement in your code:

ArduinoOTA.setPassword((const char *)"123");

Where 123 is a sample password that you should replace with your own.

Before implementing it in your sketch, it is a good idea to check how it works using BasicOTA.ino sketch available under File > Examples > ArduinoOTA. Go ahead, open BasicOTA.ino, uncomment the above statement that is already there, and upload the sketch. To make troubleshooting easier, do not modify example sketch besides what is absolutely required. This is including original simple 123 OTA password. Then attempt to upload sketch again (using OTA). After compilation is complete, once upload is about to begin, you should see prompt for password as follows:

[image: Password prompt for OTA upload]

Enter the password and upload should be initiated as usual with the only difference being Authenticating...OK message visible in upload log.

[image: Authenticating...OK during OTA upload]

You will not be prompted for a reentering the same password next time. Arduino IDE will remember it for you. You will see prompt for password only after reopening IDE, or if you change it in your sketch, upload the sketch and then try to upload it again.

Please note, it is possible to reveal password entered previously in Arduino IDE, if IDE has not been closed since last upload. This can be done by enabling Show verbose output during: upload in File > Preferences and attempting to upload the module.

[image: Verbose upload output with password passing in plain text]

The picture above shows that the password is visible in log, as it is passed to espota.py upload script.

Another example below shows situation when password is changed between uploads.

[image: Verbose output when OTA password has been changed between uploads]

When uploading, Arduino IDE used previously entered password, so the upload failed and that has been clearly reported by IDE. Only then IDE prompted for a new password. That was entered correctly and second attempt to upload has been successful.

Troubleshooting

If OTA update fails, first step is to check for error messages that may be shown in upload window of Arduino IDE. If this is not providing any useful hints, try to upload again while checking what is shown by ESP on serial port. Serial Monitor from IDE will not be useful in that case. When attempting to open it, you will likely see the following:

[image: Arduino IDE network terminal window]

This window is for Arduino Yún and not yet implemented for esp8266/Arduino. It shows up because IDE is attempting to open Serial Monitor using network port you have selected for OTA upload.

Instead you need an external serial monitor. If you are a Windows user check out Termite [http://www.compuphase.com/software_termite.htm]. This is handy, slick and simple RS232 terminal that does not impose RTS or DTR flow control. Such flow control may cause issues if you are using respective lines to toggle GPIO0 and RESET pins on ESP for upload.

Select COM port and baud rate on external terminal program as if you were using Arduino Serial Monitor. Please see typical settings for Termite [http://www.compuphase.com/software_termite.htm] below:

[image: Termite settings]

Then run OTA from IDE and look what is displayed on terminal. Successful ArduinoOTA process using BasicOTA.ino sketch looks like below (IP address depends on your network configuration):

[image: OTA upload successful - output on an external serial terminal]

If upload fails you will likely see errors caught by the uploader, exception and the stack trace, or both.

Instead of the log as on the above screen you may see the following:

[image: OTA upload failed - output on an external serial terminal]

If this is the case, then most likely ESP module has not been reset after initial upload using serial port.

The most common causes of OTA failure are as follows: * not enough physical memory on the chip (e.g. ESP01 with 512K flash memory is not enough for OTA), * too much memory declared for SPIFFS so new sketch will not fit between existing sketch and SPIFFS – see Update process - memory view, * too little memory declared in Arduino IDE for your selected board (i.e. less than physical size), * not resetting the ESP module after initial upload using serial port.

For more details regarding flash memory layout please check File system. For overview where new sketch is stored, how it is copied and how memory is organized for the purpose of OTA see Update process - memory view.

Web Browser

Updates described in this chapter are done with a web browser that can be useful in the following typical scenarios:

	after application deployment if loading directly from Arduino IDE is
inconvenient or not possible,

	after deployment if user is unable to expose module for OTA from
external update server,

	to provide updates after deployment to small quantity of modules when
setting an update server is not practicable.

Requirements

	The ESP and the computer must be connected to the same network.

Implementation Overview

Updates with a web browser are implemented using ESP8266HTTPUpdateServer class together with ESP8266WebServer and ESP8266mDNS classes. The following code is required to get it work:

setup()

MDNS.begin(host);

httpUpdater.setup(&httpServer);
httpServer.begin();

MDNS.addService("http", "tcp", 80);

loop()

httpServer.handleClient();

Application Example

The sample implementation provided below has been done using:

	example sketch WebUpdater.ino available in
ESP8266HTTPUpdateServer library,

	NodeMCU 1.0 (ESP-12E Module).

You can use another module if it meets previously described requirements.

	Before you begin, please make sure that you have the following
software installed:

	Arduino IDE and 2.0.0-rc1 (of Nov 17, 2015) version of platform
package as described under
https://github.com/esp8266/Arduino#installing-with-boards-manager

	Host software depending on O/S you use:

	Avahi http://avahi.org/ for Linux

	Bonjour http://www.apple.com/support/bonjour/ for Windows

	Mac OSX and iOS - support is already built in / no any extra
s/w is required

	Prepare the sketch and configuration for initial upload with a serial
port.

	Start Arduino IDE and load sketch WebUpdater.ino available under
File > Examples > ESP8266HTTPUpdateServer.

	Update SSID and password in the sketch, so the module can join
your Wi-Fi network.

	Open File > Preferences, look for “Show verbose output during:”
and check out “compilation” option.

[image: Preferences - enabling verbose output during compilation]

Note: This setting will be required in step 5 below. You can
uncheck this setting afterwards.

	Upload sketch (Ctrl+U). Once done, open Serial Monitor (Ctrl+Shift+M)
and check if you see the following message displayed, that contains
url for OTA update.

[image: Serial Monitor - after first load using serial]

Note: Such message will be shown only after module successfully
joins network and is ready for an OTA upload. Please remember about
resetting the module once after serial upload as discussed in chapter
Arduino IDE, step 3.

	Now open web browser and enter the url provided on Serial Monitor,
i.e. http://esp8266-webupdate.local/update. Once entered, browser
should display a form like below that has been served by your module.
The form invites you to choose a file for update.

[image: OTA update form in web browser]

Note: If entering http://esp8266-webupdate.local/update does
not work, try replacing esp8266-webupdate with module’s IP
address. For example, if your module IP is 192.168.1.100 then url
should be http://192.168.1.100/update. This workaround is useful
in case the host software installed in step 1 does not work. If still
nothing works and there are no clues on the Serial Monitor, try to
diagnose issue by opening provided url in Google Chrome, pressing F12
and checking contents of “Console” and “Network” tabs. Chrome
provides some advanced logging on these tabs.

	To obtain the file, navigate to directory used by Arduino IDE to
store results of compilation. You can check the path to this file in
compilation log shown in IDE debug window as marked below.

[image: Compilation complete - path to binary file]

	Now press “Choose File” in web browser, go to directory identified in
step 5 above, find the file “WebUpdater.cpp.bin” and upload it. If
upload is successful, you will see “OK” on web browser like below.

[image: OTA update complete]

Module will reboot that should be visible on Serial Monitor:

[image: Serial Monitor - after OTA update]

Just after reboot you should see exactly the same message
HTTPUpdateServer ready! Open http:// esp8266-webupdate.local /update in your browser
like in step 3. This is because module has been loaded again with the
same code – first using serial port, and then using OTA.

Once you are comfortable with this procedure, go ahead and modify WebUpdater.ino sketch to print some additional messages, compile it, locate new binary file and upload it using web browser to see entered changes on a Serial Monitor.

You can also add OTA routines to your own sketch following guidelines in Implementation Overview above. If this is done correctly, you should be always able to upload new sketch over the previous one using a web browser.

In case OTA update fails dead after entering modifications in your sketch, you can always recover module by loading it over a serial port. Then diagnose the issue with sketch using Serial Monitor. Once the issue is fixed try OTA again.

HTTP Server

ESPhttpUpdate class can check for updates and download a binary file from HTTP web server. It is possible to download updates from every IP or domain address on the network or Internet.

Requirements

	web server

Arduino code

Simple updater

Simple updater downloads the file every time the function is called.

ESPhttpUpdate.update("192.168.0.2", 80, "/arduino.bin");

Advanced updater

Its possible to point update function to a script at the server. If version string argument is given, it will be sent to the server. Server side script can use this to check if update should be performed.

Server side script can respond as follows: - response code 200, and send the firmware image, - or response code 304 to notify ESP that no update is required.

t_httpUpdate_return ret = ESPhttpUpdate.update("192.168.0.2", 80, "/esp/update/arduino.php", "optional current version string here");
switch(ret) {
 case HTTP_UPDATE_FAILED:
 Serial.println("[update] Update failed.");
 break;
 case HTTP_UPDATE_NO_UPDATES:
 Serial.println("[update] Update no Update.");
 break;
 case HTTP_UPDATE_OK:
 Serial.println("[update] Update ok."); // may not called we reboot the ESP
 break;
}

Server request handling

Simple updater

For the simple updater the server only needs to deliver the binary file for update.

Advanced updater

For advanced update management a script needs to run at the server side, for example a PHP script. At every update request the ESP sends some information in HTTP headers to the server.

Example header data:

[HTTP_USER_AGENT] => ESP8266-http-Update
[HTTP_X_ESP8266_STA_MAC] => 18:FE:AA:AA:AA:AA
[HTTP_X_ESP8266_AP_MAC] => 1A:FE:AA:AA:AA:AA
[HTTP_X_ESP8266_FREE_SPACE] => 671744
[HTTP_X_ESP8266_SKETCH_SIZE] => 373940
[HTTP_X_ESP8266_SKETCH_MD5] => a56f8ef78a0bebd812f62067daf1408a
[HTTP_X_ESP8266_CHIP_SIZE] => 4194304
[HTTP_X_ESP8266_SDK_VERSION] => 1.3.0
[HTTP_X_ESP8266_VERSION] => DOOR-7-g14f53a19

With this information the script now can check if an update is needed. It is also possible to deliver different binaries based on the MAC address for example.

Script example:

<?PHP

header('Content-type: text/plain; charset=utf8', true);

function check_header($name, $value = false) {
 if(!isset($_SERVER[$name])) {
 return false;
 }
 if($value && $_SERVER[$name] != $value) {
 return false;
 }
 return true;
}

function sendFile($path) {
 header($_SERVER["SERVER_PROTOCOL"].' 200 OK', true, 200);
 header('Content-Type: application/octet-stream', true);
 header('Content-Disposition: attachment; filename='.basename($path));
 header('Content-Length: '.filesize($path), true);
 header('x-MD5: '.md5_file($path), true);
 readfile($path);
}

if(!check_header('HTTP_USER_AGENT', 'ESP8266-http-Update')) {
 header($_SERVER["SERVER_PROTOCOL"].' 403 Forbidden', true, 403);
 echo "only for ESP8266 updater!\n";
 exit();
}

if(
 !check_header('HTTP_X_ESP8266_STA_MAC') ||
 !check_header('HTTP_X_ESP8266_AP_MAC') ||
 !check_header('HTTP_X_ESP8266_FREE_SPACE') ||
 !check_header('HTTP_X_ESP8266_SKETCH_SIZE') ||
 !check_header('HTTP_X_ESP8266_SKETCH_MD5') ||
 !check_header('HTTP_X_ESP8266_CHIP_SIZE') ||
 !check_header('HTTP_X_ESP8266_SDK_VERSION')
) {
 header($_SERVER["SERVER_PROTOCOL"].' 403 Forbidden', true, 403);
 echo "only for ESP8266 updater! (header)\n";
 exit();
}

$db = array(
 "18:FE:AA:AA:AA:AA" => "DOOR-7-g14f53a19",
 "18:FE:AA:AA:AA:BB" => "TEMP-1.0.0"
);

if(!isset($db[$_SERVER['HTTP_X_ESP8266_STA_MAC']])) {
 header($_SERVER["SERVER_PROTOCOL"].' 500 ESP MAC not configured for updates', true, 500);
}

$localBinary = "./bin/".$db[$_SERVER['HTTP_X_ESP8266_STA_MAC']].".bin";

// Check if version has been set and does not match, if not, check if
// MD5 hash between local binary and ESP8266 binary do not match if not.
// then no update has been found.
if((!check_header('HTTP_X_ESP8266_SDK_VERSION') && $db[$_SERVER['HTTP_X_ESP8266_STA_MAC']] != $_SERVER['HTTP_X_ESP8266_VERSION'])
 || $_SERVER["HTTP_X_ESP8266_SKETCH_MD5"] != md5_file($localBinary)) {
 sendFile($localBinary);
} else {
 header($_SERVER["SERVER_PROTOCOL"].' 304 Not Modified', true, 304);
}

header($_SERVER["SERVER_PROTOCOL"].' 500 no version for ESP MAC', true, 500);

Stream Interface

TODO describe Stream Interface

The Stream Interface is the base for all other update modes like OTA, http Server / client.

Updater class

Updater is in the Core and deals with writing the firmware to the flash, checking its integrity and telling the bootloader to load the new firmware on the next boot.

Update process - memory view

	The new sketch will be stored in the space between the old sketch and
the spiff.

	on the next reboot the “eboot” bootloader check for commands.

	the new sketch is now copied “over” the old one.

	the new sketch is started.

[image: Memory layout for OTA updates]

Guide to PROGMEM on ESP8266 and Arduino IDE

Intro

PROGMEM is a Arduino AVR feature that has been ported to ESP8266 to
ensure compatability with existing Arduino libraries, as well as, saving
RAM. On the esp8266 declaring a string such as const char * xyz =
"this is a string" will place this string in RAM, not flash. It is
possible to place a String into flash, and then load it into RAM when
it is needed. On an 8bit AVR this process is very simple. On the 32bit
ESP8266 there are conditions that must be met to read back from flash.

On the ESP8266 PROGMEM is a macro:

#define PROGMEM ICACHE_RODATA_ATTR

ICACHE_RODATA_ATTR is defined by:

#define ICACHE_RODATA_ATTR __attribute__((section(".irom.text")))

Which places the variable in the .irom.text section ie flash. Placing strings in
flash requires using any of the methods above.

Declare a global string to be stored in flash.

static const char xyz[] PROGMEM = "This is a string stored in flash";

Declare a flash string within code block.

For this you can use the PSTR macro. Which are all defined in
pgmspace.h [https://github.com/esp8266/Arduino/blob/master/cores/esp8266/pgmspace.h]

#define PGM_P const char *
#define PGM_VOID_P const void *
#define PSTR(s) (__extension__({static const char __c[] PROGMEM = (s); &__c[0];}))

In practice:

void myfunction(void) {
PGM_P xyz = PSTR("Store this string in flash");
const char * abc = PSTR("Also Store this string in flash");
}

The two examples above will store these strings in flash. To retrieve
and manipulate flash strings they must be read from flash in 4byte words.
In the Arduino IDE for esp8266 there are several functions that can help
retrieve strings from flash that have been stored using PROGMEM. Both of
the examples above return const char *. However use of these pointers,
without correct 32bit alignment you will cause a segmentation fault and
the ESP8266 will crash. You must read from the flash 32 bit aligned.

Functions to read back from PROGMEM

Which are all defined in
pgmspace.h [https://github.com/esp8266/Arduino/blob/master/cores/esp8266/pgmspace.h]

int memcmp_P(const void* buf1, PGM_VOID_P buf2P, size_t size);
void* memccpy_P(void* dest, PGM_VOID_P src, int c, size_t count);
void* memmem_P(const void* buf, size_t bufSize, PGM_VOID_P findP, size_t findPSize);
void* memcpy_P(void* dest, PGM_VOID_P src, size_t count);
char* strncpy_P(char* dest, PGM_P src, size_t size);
char* strcpy_P(dest, src)
char* strncat_P(char* dest, PGM_P src, size_t size);
char* strcat_P(dest, src)
int strncmp_P(const char* str1, PGM_P str2P, size_t size);
int strcmp_P(str1, str2P)
int strncasecmp_P(const char* str1, PGM_P str2P, size_t size);
int strcasecmp_P(str1, str2P)
size_t strnlen_P(PGM_P s, size_t size);
size_t strlen_P(strP)
char* strstr_P(const char* haystack, PGM_P needle);
int printf_P(PGM_P formatP, ...);
int sprintf_P(char *str, PGM_P formatP, ...);
int snprintf_P(char *str, size_t strSize, PGM_P formatP, ...);
int vsnprintf_P(char *str, size_t strSize, PGM_P formatP, va_list ap);

There are a lot of functions there but in reality they are _P
versions of standard c functions that are adapted to read from the
esp8266 32bit aligned flash. All of them take a PGM_P which is
essentially a const char *. Under the hood these functions all use, a
process to ensure that 4 bytes are read, and the request byte is returned.

This works well when you have designed a function as above that is
specialised for dealing with PROGMEM pointers but there is no type
checking except against const char *. This means that it is totally
legitimate, as far as the compiler is concerned, for you to pass it any
const char * string, which is obviously not true and will lead to
undefined behaviour. This makes it impossible to create any overloaded
functions that can use flash strings when they are defined as PGM_P.
If you try you will get an ambiguous overload error as PGM_P ==
const char *.

Enter the __FlashStringHelper… This is a wrapper class that allows flash
strings to be used as a class, this means that type checking and function
overloading can be used with flash strings. Most people will be familiar with
the F() macro and possibly the FPSTR() macro. These are defined in WString.h [https://github.com/esp8266/Arduino/blob/master/cores/esp8266/WString.h#L37]:

#define FPSTR(pstr_pointer) (reinterpret_cast<const __FlashStringHelper *>(pstr_pointer))
#define F(string_literal) (FPSTR(PSTR(string_literal)))

So FSPTR() takes a PROGMEM pointer to a string and casts it to this
__FlashStringHelper class. Thus if you have defined a string as
above xyz you can use FPSTR() to convert it to
__FlashStringHelper for passing into functions that take it.

static const char xyz[] PROGMEM = "This is a string stored in flash";
Serial.println(FPSTR(xyz));

The F() combines both of these methods to create an easy and quick
way to store an inline string in flash, and return the type
__FlashStringHelper. For example:

Serial.println(F("This is a string stored in flash"));

Although these two functions provide a similar function, they serve
different roles. FPSTR() allows you to define a global flash string
and then use it in any function that takes __FlashStringHelper.
F() allows you to define these flash strings in place, but you can’t
use them anywhere else. The consequence of this is sharing common
strings is possible using FPSTR() but not F().
__FlashStringHelper is what the String class uses to overload its
constructor:

String(const char *cstr = ""); // constructor from const char *
String(const String &str); // copy constructor
String(const __FlashStringHelper *str); // constructor for flash strings

This allows you to write:

String mystring(F("This string is stored in flash"));

How do I write a function to use __FlashStringHelper? Simples: cast the pointer back to a PGM_P and use the _P functions shown above. This an example implementation for String for the concat function.

unsigned char String::concat(const __FlashStringHelper * str) {
 if (!str) return 0; // return if the pointer is void
 int length = strlen_P((PGM_P)str); // cast it to PGM_P, which is basically const char *, and measure it using the _P version of strlen.
 if (length == 0) return 1;
 unsigned int newlen = len + length;
 if (!reserve(newlen)) return 0; // create a buffer of the correct length
 strcpy_P(buffer + len, (PGM_P)str); //copy the string in using strcpy_P
 len = newlen;
 return 1;
}

How do I declare a global flash string and use it?

static const char xyz[] PROGMEM = "This is a string stored in flash. Len = %u";

void setup() {
 Serial.begin(115200); Serial.println();
 Serial.println(FPSTR(xyz)); // just prints the string, must convert it to FlashStringHelper first using FPSTR().
 Serial.printf_P(xyz, strlen_P(xyz)); // use printf with PROGMEM string
}

How do I use inline flash strings?

void setup() {
 Serial.begin(115200); Serial.println();
 Serial.println(F("This is an inline string")); //
 Serial.printf_P(PSTR("This is an inline string using printf %s"), "hello");
}

How do I declare and use data in PROGMEM?

const size_t len_xyz = 30;
const uint8_t xyz[] PROGMEM = {
 0x53, 0x61, 0x79, 0x20, 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20,
 0x74, 0x6f, 0x20, 0x4d, 0x79, 0x20, 0x4c, 0x69, 0x74, 0x74,
 0x6c, 0x65, 0x20, 0x46, 0x72, 0x69, 0x65, 0x6e, 0x64, 0x00};

 void setup() {
 Serial.begin(115200); Serial.println();
 uint8_t * buf = new uint8_t[len_xyz];
 if (buf) {
 memcpy_P(buf, xyz, len_xyz);
 Serial.write(buf, len_xyz); // output the buffer.
 }
 }

How do I declare some data in PROGMEM, and retrieve one byte from it.

Declare the data as done previously, then use pgm_read_byte to get
the value back.

const size_t len_xyz = 30;
const uint8_t xyz[] PROGMEM = {
 0x53, 0x61, 0x79, 0x20, 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20,
 0x74, 0x6f, 0x20, 0x4d, 0x79, 0x20, 0x4c, 0x69, 0x74, 0x74,
 0x6c, 0x65, 0x20, 0x46, 0x72, 0x69, 0x65, 0x6e, 0x64, 0x00
};

void setup() {
 Serial.begin(115200); Serial.println();
 for (int i = 0; i < len_xyz; i++) {
 uint8_t byteval = pgm_read_byte(xyz + i);
 Serial.write(byteval); // output the buffer.
 }
}

In summary

It is easy to store strings in flash using PROGMEM and PSTR but
you have to create functions that specifically use the pointers they
generate as they are basically const char *. On the other hand
FPSTR and F() give you a class that you can do implicit
conversions from, very useful when overloading functions, and doing
implicit type conversions. It is worth adding that if you wish to store
an int, float or pointer these can be stored and read back
directly as they are 4 bytes in size and therefor will be always
aligned!

Hope this helps.

Boards

Adafruit HUZZAH ESP8266 (ESP-12)

TODO: add notes

ESPresso Lite 1.0

ESPresso Lite 1.0 (beta version) is an Arduino-compatible Wi-Fi development board powered by Espressif System’s own ESP8266 WROOM-02 module. It has breadboard-friendly breakout pins with in-built LED, two reset/flash buttons and a user programmable button . The operating voltage is 3.3VDC, regulated with 800mA maximum current. Special distinctive features include on-board I2C pads that allow direct connection to OLED LCD and sensor boards.

ESPresso Lite 2.0

ESPresso Lite 2.0 is an Arduino-compatible Wi-Fi development board based on an earlier V1 (beta version). Re-designed together with Cytron Technologies, the newly-revised ESPresso Lite V2.0 features the auto-load/auto-program function, eliminating the previous need to reset the board manually before flashing a new program. It also feature two user programmable side buttons and a reset button. The special distinctive features of on-board pads for I2C sensor and actuator is retained.

Phoenix 1.0

Product page: http://www.espert.co

Phoenix 2.0

Product page: http://www.espert.co

NodeMCU 0.9

Pin mapping

Pin numbers written on the board itself do not correspond to ESP8266 GPIO pin numbers. Constants are defined to make using this board easier:

static const uint8_t D0 = 16;
static const uint8_t D1 = 5;
static const uint8_t D2 = 4;
static const uint8_t D3 = 0;
static const uint8_t D4 = 2;
static const uint8_t D5 = 14;
static const uint8_t D6 = 12;
static const uint8_t D7 = 13;
static const uint8_t D8 = 15;
static const uint8_t D9 = 3;
static const uint8_t D10 = 1;

If you want to use NodeMCU pin 5, use D5 for pin number, and it will be translated to ‘real’ GPIO pin 14.

NodeMCU 1.0

This module is sold under many names for around $6.50 on AliExpress and it’s one of the cheapest, fully integrated ESP8266 solutions.

It’s an open hardware design with an ESP-12E core and 4 MB of SPI flash.

According to the manufacturer, “with a micro USB cable, you can connect NodeMCU devkit to your laptop and flash it without any trouble”. This is more or less true: the board comes with a CP2102 onboard USB to serial adapter which just works, well, the majority of the time. Sometimes flashing fails and you have to reset the board by holding down FLASH +
RST, then releasing FLASH, then releasing RST. This forces the CP2102 device to power cycle and to be re-numbered by Linux.

The board also features a NCP1117 voltage regulator, a blue LED on GPIO16 and a 220k/100k Ohm voltage divider on the ADC input pin.

Full pinout and PDF schematics can be found here [https://github.com/nodemcu/nodemcu-devkit-v1.0]

Olimex MOD-WIFI-ESP8266-DEV

This board comes with 2 MB of SPI flash and optional accessories (e.g. evaluation board ESP8266-EVB or BAT-BOX for batteries).

The basic module has three solder jumpers that allow you to switch the operating mode between SDIO, UART and FLASH.

The board is shipped for FLASH operation mode, with jumpers TD0JP=0, IO0JP=1, IO2JP=1.

Since jumper IO0JP is tied to GPIO0, which is PIN 21, you’ll have to ground it before programming with a USB to serial adapter and reset the board by power cycling it.

UART pins for programming and serial I/O are GPIO1 (TXD, pin 3) and GPIO3 (RXD, pin 4).

You can find the board schematics here [https://github.com/OLIMEX/ESP8266/blob/master/HARDWARE/MOD-WIFI-ESP8266-DEV/MOD-WIFI-ESP8266-DEV_schematic.pdf]

Olimex MOD-WIFI-ESP8266

This is a stripped down version of the above. Behaves identically in terms of jumpers but has less pins readily available for I/O. Still 2 MB of SPI flash.

Olimex ESP8266-EVB

It’s an Olimex MOD-WIFI-ESP8266-DEV module installed on the headers of a development board which features some breakout connectors, a button (GPIO0) and a relay (GPIO5).

To download a program you have to connect GND/RX/TX from a serial/USB adapter to the UEXT connector and press the only button before applying power to enter UART mode.

Don’t connect 5V from the serial/USB adapter to the board or you won’t be able to power cycle it for UART mode.

You can find the board schematics here [https://github.com/OLIMEX/ESP8266/blob/master/HARDWARE/ESP8266-EVB/ESP8266-EVB_Rev_A.pdf].

This guide [https://www.olimex.com/Products/IoT/ESP8266-EVB/resources/ESP8266-EVB-how-to-use-Arduino.pdf] is also useful for the first setup, since it contains the UEXT connector pinout.

Board variants include:

	ESP8266-EVB-BAT: comes with built-in LiPo charger and step-up converter

	ESP8266-EVB-BAT-BOX: as above, but enclosd in a plastic box (non-weatherproof)

SparkFun ESP8266 Thing

Product page: https://www.sparkfun.com/products/13231

TODO: add notes

SweetPea ESP-210

TODO: add notes

ESPino

ESPino integrates the ESP-12 module with a 3.3v regulator, CP2104 USB-Serial bridge and a micro USB connector for easy programming. It is designed for fitting in a breadboard and has an RGB Led and two buttons for easy prototyping.

For more information about the hardware, pinout diagram and programming procedures, please see the datasheet [https://github.com/makerlabmx/ESPino-tools/raw/master/Docs/ESPino-Datasheet-EN.pdf].

Product page: http://www.espino.io/en

WifInfo

WifInfo integrates the ESP-12 or ESP-07+Ext antenna module with a 3.3v regulator and the hardware to be able to measure French telemetry issue from ERDF powering meter serial output. It has a USB connector for powering, an RGB WS2812 Led, 4 pins I2C connector to fit OLED or sensor, and two buttons + FTDI connector and auto reset feature.

For more information, please see WifInfo related blog [http://hallard.me/category/wifinfo/] entries, github [https://github.com/hallard/WifInfo] and community [https://community.hallard.me/category/16/wifinfo] forum.

DigiStump Oak

The Oak requires an [adapter](#serial-adapter) for a serial connection or flashing; its micro USB port is only for power.

To make a serial connection, wire the adapter’s TX to P3, RX to P4, and GND to GND. Supply 3.3v from the serial adapter if not already powered via USB.

To put the board into bootloader mode, configure a serial connection as above, connect P2 to GND, then re-apply power. Once flashing is complete, remove the connection from P2 to GND, then re-apply power to boot into normal mode.

Generic ESP8266 modules

These modules come in different form factors and pinouts. See the page at ESP8266 community wiki for more info: ESP8266 Module Family [http://www.esp8266.com/wiki/doku.php?id=esp8266-module-family].

Usually these modules have no bootstapping resistors on board, insufficient decoupling capacitors, no voltage regulator, no reset circuit, and no USB-serial adapter. This makes using them somewhat tricky, compared to development boards which add these features.

In order to use these modules, make sure to observe the following:

	Provide sufficient power to the module. For stable use of the ESP8266 a power supply with 3.3V and >= 250mA is required. Using the power available from USB to Serial adapter is not recommended, these adapters typically do not supply enough current to run ESP8266 reliably in every situation. An external supply or regulator alongwith filtering capacitors is preferred.

	Connect bootstapping resistors to GPIO0, GPIO2, GPIO15 according to the schematics below.

	Put ESP8266 into bootloader mode before uploading code.

Serial Adapter

There are many different USB to Serial adapters / boards. To be able to put ESP8266 into bootloader mode using serial handshaking lines, you need the adapter which breaks out RTS and DTR outputs. CTS and DSR are not useful for upload (they are inputs). Make sure the adapter can work with 3.3V IO voltage: it should have a jumper or a switch to select between 5V and 3.3V, or be marked as 3.3V only.

Adapters based around the following ICs should work:

	FT232RL

	CP2102

	CH340G

PL2303-based adapters are known not to work on Mac OS X. See https://github.com/igrr/esptool-ck/issues/9 for more info.

Minimal Hardware Setup for Bootloading and Usage

	PIN

	Resistor

	Serial Adapter

	VCC

	
	VCC (3.3V)

	GND

	
	GND

	TX or GPIO2*

	
	RX

	RX

	
	TX

	GPIO0

	PullUp

	DTR

	Reset*

	PullUp

	RTS

	GPIO15*

	PullDown

	

	CH_PD

	PullUp

	

	Note

	GPIO15 is also named MTDO

	Reset is also named RSBT or REST (adding PullUp improves the
stability of the module)

	GPIO2 is alternative TX for the boot loader mode

	Directly connecting a pin to VCC or GND is not a substitute for a
PullUp or PullDown resistor, doing this can break upload management
and the serial console, instability has also been noted in some
cases.

ESP to Serial

[image: ESP to Serial]
ESP to Serial

Minimal Hardware Setup for Bootloading only

ESPxx Hardware

	PIN

	Resistor

	Serial Adapter

	VCC

	
	VCC (3.3V)

	GND

	
	GND

	TX or GPIO2

	
	RX

	RX

	
	TX

	GPIO0

	
	GND

	Reset

	
	RTS*

	GPIO15

	PullDown

	

	CH_PD

	PullUp

	

	Note

	if no RTS is used a manual power toggle is needed

Minimal Hardware Setup for Running only

ESPxx Hardware

	PIN

	Resistor

	Power supply

	VCC

	
	VCC (3.3V)

	GND

	
	GND

	GPIO0

	PullUp

	

	GPIO15

	PullDown

	

	CH_PD

	PullUp

	

Minimal

[image: ESP min]
ESP min

Improved Stability

[image: ESP improved stability]
ESP improved stability

Boot Messages and Modes

The ESP module checks at every boot the Pins 0, 2 and 15. based on them its boots in different modes:

	GPIO15

	GPIO0

	GPIO2

	Mode

	0V

	0V

	3.3V

	Uart Bootloader

	0V

	3.3V

	3.3V

	Boot sketch (SPI flash)

	3.3V

	x

	x

	SDIO mode (not used for Arduino)

at startup the ESP prints out the current boot mode example:

rst cause:2, boot mode:(3,6)

note: - GPIO2 is used as TX output and the internal Pullup is enabled on boot.

rst cause

	Number

	Description

	0

	unknown

	1

	normal boot

	2

	reset pin

	3

	software reset

	4

	watchdog reset

boot mode

the first value respects the pin setup of the Pins 0, 2 and 15.

	Number

	GPIO15

	GPIO0

	GPIO2

	Mode

	0

	0V

	0V

	0V

	Not valid

	1

	0V

	0V

	3.3V

	Uart

	2

	0V

	3.3V

	0V

	Not valid

	3

	0V

	3.3V

	3.3V

	Flash

	4

	3.3V

	0V

	0V

	SDIO

	5

	3.3V

	0V

	3.3V

	SDIO

	6

	3.3V

	3.3V

	0V

	SDIO

	7

	3.3V

	3.3V

	3.3V

	SDIO

note: - number = ((GPIO15 << 2) | (GPIO0 << 1) | GPIO2);

Generic ESP8285 modules

ESP8285 (datasheet [http://www.espressif.com/sites/default/files/0a-esp8285_datasheet_en_v1.0_20160422.pdf]) is a multi-chip package which contains ESP8266 and 1MB flash. All points related to bootstrapping resistors and recommended circuits listed above apply to ESP8285 as well.

Note that since ESP8285 has SPI flash memory internally connected in DOUT mode, pins 9 and 10 may be used as GPIO / I2C / PWM pins.

WeMos D1

Product page: https://www.wemos.cc/

WeMos D1 mini

Product page: https://www.wemos.cc/

ESPino (WROOM-02 Module) by ThaiEasyElec

ESPino by ThaiEasyElec using WROOM-02 module from Espressif Systems with 4 MB Flash.

We will update an English description soon. - Product page:
http://thaieasyelec.com/products/wireless-modules/wifi-modules/espino-wifi-development-board-detail.html
- Schematics:
www.thaieasyelec.com/downloads/ETEE052/ETEE052_ESPino_Schematic.pdf -
Dimensions:
http://thaieasyelec.com/downloads/ETEE052/ETEE052_ESPino_Dimension.pdf
- Pinouts:
http://thaieasyelec.com/downloads/ETEE052/ETEE052_ESPino_User_Manual_TH_v1_0_20160204.pdf (Please see pg. 8)

gen4-IoD Range by 4D Systems

gen4-IoD Range of ESP8266 powered Display Modules by 4D Systems.

2.4”, 2.8” and 3.2” TFT LCD with uSD card socket and Resistive Touch. Chip Antenna + uFL Connector.

Datasheet and associated downloads can be found on the 4D Systems product page.

The gen4-IoD range can be programmed using the Arduino IDE and also the 4D Systems Workshop4 IDE, which incorporates many additional graphics benefits. GFX4d library is available, along with a number of demo applications.

	Product page: http://www.4dsystems.com.au/product/gen4-IoD

FAQ

The purpose of this FAQ / Troubleshooting is to respond to questions
commonly asked in Issues [https://github.com/esp8266/Arduino/issues]
section and on ESP8266 Community forum [http://www.esp8266.com/].

Where possible we are going right to the answer and provide it within
one or two paragraphs. If it takes more than that, you will see a link
:arrow_right: to more details.

Please feel free to contribute if you believe that some frequent issues
are not covered below.

I am getting “espcomm_sync failed” error when trying to upload my ESP. How to resolve this issue?

This message indicates issue with uploading ESP module over a serial
connection. There are couple of possible causes, that depend on the type
of your module, if you use separate USB to serial converter.

Read more.

Why esptool is not listed in “Programmer” menu? How do I upload ESP without it?

Do not worry about “Programmer” menu of Arduino IDE. It doesn’t matter
what is selected in it — upload now always defaults to using esptool.

Ref. #138 [https://github.com/esp8266/Arduino/issues/138],
#653 [https://github.com/esp8266/Arduino/issues/653] and
#739 [https://github.com/esp8266/Arduino/issues/739].

My ESP crashes running some code. How to troubleshoot it?

The code may crash because of s/w bug or issue with your h/w. Before
entering an issue report, please perform initial troubleshooting.

Read more.

This Arduino library doesn’t work on ESP. How do I make it working?

You would like to use this Arduino library with ESP8266 and it does not
perform. It is not listed among libraries verified to work with ESP8266.

Read more.

In the IDE, for ESP-12E that has 4M flash, I can choose 4M (1M SPIFFS) or 4M (3M SPIFFS). No matter what I select, the IDE tells me the maximum code space is about 1M. Where does my flash go?

The reason we cannot have more than 1MB of code in flash has to do with
a hardware limitation. Flash cache hardware on the ESP8266 only allows
mapping 1MB of code into the CPU address space at any given time. You
can switch mapping offset, so technically you can have more than 1MB
total, but switching such “banks” on the fly is not easy and efficient,
so we don’t bother doing that. Besides, no one has so far complained
about 1MB of code space being insufficient for practical purposes.

The option to choose 4M or 1M SPIFFS is to optimize the upload time.
Uploading 3MB takes a long time so sometimes you can just use 1MB. Other
2MB of flash can still be used with ESP.flashRead and
ESP.flashWrite APIs if necessary.

I have observed a case when ESP.restart() doesn’t work. What is the reason for that?

You will see this issue only if serial upload was not followed by a
physical reset (e.g. power-on reset). For a device being in that state
ESP.restart will not work. Apparently the issue is caused by one of
internal registers not being properly updated until physical
reset [https://github.com/esp8266/Arduino/issues/1017#issuecomment-200605576].
This issue concerns only serial uploads. OTA uploads are not affected.
If you are using ESP.restart, the work around is to reset ESP once
after each serial upload.

Ref. #1017 [https://github.com/esp8266/Arduino/issues/1017],
#1107 [https://github.com/esp8266/Arduino/issues/1107],
#1782 [https://github.com/esp8266/Arduino/issues/1782]

How to resolve “Board generic (platform esp8266, package esp8266) is unknown” error?

This error may pop up after switching between
staging [https://github.com/esp8266/Arduino#staging-version-] and
stable [https://github.com/esp8266/Arduino#stable-version-] esp8266
/ Arduino package installations, or after upgrading the package version
Read more.

Exception Causes (EXCCAUSE)

	EXCCAUSE
Code

	Cause Name

	Cause Description

	Required
Option

	EXCVADDR
Loaded

	0

	IllegalInstructionCause

	Illegal instruction

	Exception

	No

	1

	SyscallCause

	SYSCALL instruction

	Exception

	No

	2

	InstructionFetchErrorCause

	Processor internal physical address or
data error during instruction fetch

	Exception

	Yes

	3

	LoadStoreErrorCause

	Processor internal physical address or
data error during load or store

	Exception

	Yes

	4

	Level1InterruptCause

	Level-1 interrupt as indicated by set
level-1 bits in the INTERRUPT register

	Interrupt

	No

	5

	AllocaCause

	MOVSP instruction, if caller’s
registers are not in the register file

	Windowed
Register

	No

	6

	IntegerDivideByZeroCause

	QUOS, QUOU, REMS, or REMU divisor
operand is zero

	32-bit
Integer
Divide

	No

	7

	Reserved for Tensilica

	
	
	

	8

	PrivilegedCause

	Attempt to execute a privileged
operation when CRING != 0

	MMU

	No

	9

	LoadStoreAlignmentCause

	Load or store to an unaligned address

	Unaligned
Exception

	Yes

	10..11

	Reserved for Tensilica

	
	
	

	12

	InstrPIFDateErrorCause

	PIF data error during instruction fetch

	Processor
Interface

	Yes

	13

	LoadStorePIFDataErrorCause

	Synchronous PIF data error during
LoadStore access

	Processor
Interface

	Yes

	14

	InstrPIFAddrErrorCause

	PIF address error during instruction
fetch

	Processor
Interface

	Yes

	15

	LoadStorePIFAddrErrorCause

	Synchronous PIF address error during
LoadStore access

	Processor
Interface

	Yes

	16

	InstTLBMissCause

	Error during Instruction TLB refill

	MMU

	Yes

	17

	InstTLBMultiHitCause

	Multiple instruction TLB entries
matched

	MMU

	Yes

	18

	InstFetchPrivilegeCause

	An instruction fetch referenced a
virtual address at a ring level less
than CRING

	MMU

	Yes

	19

	Reserved for Tensilica

	
	
	

	20

	InstFetchProhibitedCause

	An instruction fetch referenced a page
mapped with an attribute that does not
permit instruction fetch

	Region
Protection
or MMU

	Yes

	21..23

	Reserved for Tensilica

	
	
	

	24

	LoadStoreTLBMissCause

	Error during TLB refill for a load or
store

	MMU

	Yes

	25

	LoadStoreTLBMultiHitCause

	Multiple TLB entries matched for a load
or store

	MMU

	Yes

	26

	LoadStorePrivilegeCause

	A load or store referenced a virtual
address at a ring level less than CRING

	MMU

	Yes

	27

	Reserved for Tensilica

	
	
	

	28

	LoadProhibitedCause

	A load referenced a page mapped with an
attribute that does not permit loads

	Region
Protection
or MMU

	Yes

	29

	StoreProhibitedCause

	A store referenced a page mapped with
an attribute that does not permit

	Region
Protection
or MMU

	Yes

	30..31

	Reserved for Tensilica

	
	
	

	32..39

	CoprocessornDisabled

	Coprocessor n instruction when cpn
disabled. n varies 0..7 as the cause
varies 32..39

	Coprocessor

	No

	40..63

	Reserved

	
	
	

Infos from Xtensa Instruction Set Architecture (ISA) Reference Manual

Debugging

Introduction

Since 2.1.0-rc1 the core includes a Debugging feature that is
controllable over the IDE menu.

The new menu points manage the real-time Debug messages.

Requirements

For usage of the debugging a Serial connection is required (Serial or
Serial1).

The Serial Interface need to be initialized in the setup().

Set the Serial baud rate as high as possible for your Hardware setup.

Minimum sketch to use debugging:

void setup() {
 Serial.begin(115200);
}

void loop() {
}

Usage

	Select the Serial interface for the Debugging messages: [image: Debug-Port]

	Select which type / level you want debug messages for: [image: Debug-Level]

	Check if the Serial interface is initialized in setup() (see
Requirements)

	Flash sketch

	Check the Serial Output

Informations

It work with every sketch that enables the Serial interface that is
selected as debug port.

The Serial interface can still be used normal in the Sketch.

The debug output is additional and will not disable any interface from
usage in the sketch.

For Developers

For the debug handling uses defines.

The defined are set by command line.

Debug Port

The port has the define DEBUG_ESP_PORT possible value: - Disabled:
define not existing - Serial: Serial - Serial1: Serial1

Debug Level

All defines for the different levels starts with DEBUG_ESP_

a full list can be found here in the
boards.txt [https://github.com/esp8266/Arduino/blob/master/boards.txt#L180]

Example for own debug messages

The debug messages will be only shown when the Debug Port in the IDE
menu is set.

#ifdef DEBUG_ESP_PORT
#define DEBUG_MSG(...) DEBUG_ESP_PORT.printf(__VA_ARGS__)
#else
#define DEBUG_MSG(...)
#endif

void setup() {
 Serial.begin(115200);

 delay(3000);
 DEBUG_MSG("bootup...\n");
}

void loop() {
 DEBUG_MSG("loop %d\n", millis());
 delay(1000);
}

Stack Dumps

Introduction

If the ESP crash the Exception Cause will be shown and the current stack will be dumped.

Example:

Exception (0): epc1=0x402103f4 epc2=0x00000000 epc3=0x00000000 excvaddr=0x00000000 depc=0x00000000

ctx: sys
sp: 3ffffc10 end: 3fffffb0 offset: 01a0

>>>stack>>>
3ffffdb0: 40223e00 3fff6f50 00000010 60000600
3ffffdc0: 00000001 4021f774 3fffc250 4000050c
3ffffdd0: 400043d5 00000030 00000016 ffffffff
3ffffde0: 400044ab 3fffc718 3ffffed0 08000000
3ffffdf0: 60000200 08000000 00000003 00000000
3ffffe00: 0000ffff 00000001 04000002 003fd000
3ffffe10: 3fff7188 000003fd 3fff2564 00000030
3ffffe20: 40101709 00000008 00000008 00000020
3ffffe30: c1948db3 394c5e70 7f2060f2 c6ba0c87
3ffffe40: 3fff7058 00000001 40238d41 3fff6ff0
3ffffe50: 3fff6f50 00000010 60000600 00000020
3ffffe60: 402301a8 3fff7098 3fff7014 40238c77
3ffffe70: 4022fb6c 40230ebe 3fff1a5b 3fff6f00
3ffffe80: 3ffffec8 00000010 40231061 3fff0f90
3ffffe90: 3fff6848 3ffed0c0 60000600 3fff6ae0
3ffffea0: 3fff0f90 3fff0f90 3fff6848 3fff6d40
3ffffeb0: 3fff28e8 40101233 d634fe1a fffeffff
3ffffec0: 00000001 00000000 4022d5d6 3fff6848
3ffffed0: 00000002 4000410f 3fff2394 3fff6848
3ffffee0: 3fffc718 40004a3c 000003fd 3fff7188
3ffffef0: 3fffc718 40101510 00000378 3fff1a5b
3fffff00: 000003fd 4021d2e7 00000378 000003ff
3fffff10: 00001000 4021d37d 3fff2564 000003ff
3fffff20: 000003fd 60000600 003fd000 3fff2564
3fffff30: ffffff00 55aa55aa 00000312 0000001c
3fffff40: 0000001c 0000008a 0000006d 000003ff
3fffff50: 4021d224 3ffecf90 00000000 3ffed0c0
3fffff60: 00000001 4021c2e9 00000003 3fff1238
3fffff70: 4021c071 3ffecf84 3ffecf30 0026a2b0
3fffff80: 4021c0b6 3fffdab0 00000000 3fffdcb0
3fffff90: 3ffecf40 3fffdab0 00000000 3fffdcc0
3fffffa0: 40000f49 40000f49 3fffdab0 40000f49
<<<stack<<<

The first number after Exception gives the cause of the reset. a
full ist of all causes can be found here
the hex after are the stack dump.

Decode

It’s possible to decode the Stack to readable information. For more info see the Esp Exception Decoder [https://github.com/me-no-dev/EspExceptionDecoder] tool.

[image: ESP Exception Decoder]
ESP Exception Decoder

Using Eclipse with Arduino ESP8266

What to Download

	arduino IDE [https://www.arduino.cc/en/Main/Software]

	Eclipse IDE for C/C++
Developers [http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/marsr]

	Java [http://www.java.com/]

Setup Arduino

See the
Readme [https://github.com/esp8266/Arduino#installing-with-boards-manager]

Setup Eclipse

	step 1 [http://www.baeyens.it/eclipse/how_to.shtml#/c]

	step 2 [http://www.baeyens.it/eclipse/how_to.shtml#/e]

	go to Window –> preferences –> Arduino

	add as private hardware path the Part to the ESP8266

example private hardware path

Windows: C:\Users\[username]\AppData\Roaming\Arduino15\packages\esp8266\hardware
Linux: /home/[username]/.arduino15/packages/esp8266/hardware

Eclipse wont build

if eclipse dont find the path to the Compiler add to the platform.txt
after:

version=1.6.4

this:

runtime.tools.xtensa-lx106-elf-gcc.path={runtime.platform.path}/../../../tools/xtensa-lx106-elf-gcc/1.20.0-26-gb404fb9
runtime.tools.esptool.path={runtime.platform.path}/../../../tools/esptool/0.4.4

Note: - the path may changed, check the current version. - each update
over the Arduino IDE will remove the fix - may not needed in future if
Eclipse Plugin get an Update

Changelog

2.3.0

June 23, 2016

Package link:
http://arduino.esp8266.com/versions/2.3.0/package_esp8266com_index.json.

Core

	Fix NMI interrupt handler alignment

	Update SDK to 1.5.3

	umm_malloc: print block start address before heap corruption
callback is triggered

	If GDBStub library is used, break into gdb on assert and panic

	Add option to keep FS classes in namespace (#2030)

	Add SPIFFS::end (#1657)

	Add ArduinoOTA::getHostname() interface

	Add __throw_out_of_range

	Add support for RTC user memory in ESP-specific APIs. (#1836)

	Expose RTC_USER_MEM in esp8266_peri.h

	Remove DISABLED macro (#2072)

	Execute global constructors in correct order (#2074)

	Real board name available in Sketch/MDNS/OTA (#2054)

	Add DOUT/QOUT flash modes

	Add ESP8285 entry in boards menu

	Move timer detachInterrupt functions into IRAM (#2083)

	Make Updater be able to run inside async callbacks (#2096)

	Add new boards Phoenix 1.0 & Phoenix 2.0 (#2088)

	Store git version of the core in the compiled binary (#2099)

	Rebuild libstdc++ with mlongcalls and link against it (#1983)

	Add mechanism for posting functions to the main loop (#2082)

	MD5Builder::addStream: fixed falsy calculated hash for len >
filelength (#2126)

	Fix SPIFFS.openDir(“”) (#2143)

	Bring back old semantics to random and randomSeed, add secureRandom
(#1710) (#2142)

	Add missing pgm_read_ptr{_near/_far} macros (#2160)

	Add macro for maximum open SPIFFS files, settings it to 1 saves about
1k heap. (#2167)

	Fix UART pins setting (#2098)

	Fix ESP.getSketchSize, add ESP.getSketchMD5 (#2158)

	Add Serial.baudRate() to get current baud rate (#2079)

Libraries

	SNI support in WiFiClientSecure (#1285)

	Update axTLS to 139914f

	HTTPClient: return error when HTTPClient::begin is called with HTTPS
URL without certificate fingerprint (#1941)

	HTTPClient: fix default port not being set

	HTTPClient: fix handling of chunked transfer encoding (#1975)

	ESP8266SSDP: switch SSDP send arguments around

	ESP8266WiFi: fix UdpContext::peek to return int (#1946)

	ESP8266WiFi: fix WiFiSleepType_t values to match SDK ones

	LwIP: use gcc-built LwIP by default (#1926)

	LwIP: fix crash in igmp_start_timer (#1826)

	HTTPClient: include non-standard ports in Host: header

	ESP8266WiFi: Prevent WiFi config corruption (#1997 #1856 #1699 #1675)

	GDBStub: fix section attribute for core gdbstub functions

	Wire: I2C bus reset with info to user

	ESP8266HTTPClient: allow HTTP header value without LWS

	ESP8266mDNS: Fix mDNS doesn’t accept queryService responses from
avahi-daemon (#2015)

	Add MFRC522 to supported libraries (#2044)

	Update axTLS to ab516f7 (1.5.3+)

	Mention ESP8266Ping library

	ESP8266HTTPClient: fix duplicate Content-Length headers (#1902)

	ESP8266HTTPUpdateServer: make HTTP Update Server more secure (#2104)

	ESP8266WiFi: add virtual destructor to WiFiServer class (#2116)

	ESP8266WiFi: fix error when calling WiFiServer::close more than
once

	ESP8266WiFi: WiFi event handling refactoring (#2119)

	ESP8266mDNS: restart listening when WiFi STA is
connected/disconnected (#1828)

	ESP8266WiFi: allow DHCP client to be re-enabled using WiFi.config(0U,
0U, 0U) (#1896)

	ESP8266WiFi: enable SO_REUSE in LwIP and WiFiServer (#1431)

	ESP8266WebServer: make ESP8266WebServer::urlDecode public (#1419)

	LwIP: sntp_localtime: return -1 in tm_isdst field (#2010)

	ESP8266WiFi: fix for crash in WiFiClientSecure when WiFi is
disconnected (#2139)

	SD: Prevent WDT resets in SD library (#1815)

	ESP8266WiFi: Fix issue when WiFi.begin(ssid, pass) is called right
after WiFi.mode(WIFI_OFF)

Tools

	Python 3 compatibility for get.py

	Device side test library and test runner

	Fix ARM toolchain files permissions (#2004)

	Update esptool to 0.4.9

2.2.0

April 18, 2016

Package link:
http://arduino.esp8266.com/versions/2.2.0/package_esp8266com_index.json.

Core

	Leverage realloc() in String::changeBuffer()

	Clean up core files

	Add host side tests

	Fix possible null pointer in umm_malloc

	Remove “Upload Using” option from Tools menu

	Move attachInterrupt and detachInterrupt into IRAM (#1734)

	Implement strstr_P

	Allow indefinite duration for tone()

	Fix crashes when using tone()

	Fix RF_MODE and ADC_MODE

	Move micros, delayMicroseconds, millis to IRAM (#1326)

	Fix pulseIn (#1072, #1149)

	Accept both named constant and ADC channel number in analogRead
(#1766)

	Enable heap poisoning only when debug options are enabled (#1800)

	Bootloader: don’t touch RTC memory if it doesn’t contain a valid
command (#619)

	Update SDK to 1.5.2 (#1653)

	Clean up variants, fix digitalPinHasPWM definition (#1831)

	Don’t set RF mode on boot unless it was overridden

	Change build.board property for boards which renumber pins like
NodeMCU (#1878)

	Fix Exception 2 when using printf or vprintf

Libraries

	Update axTLS to 5b4be7d

	WiFiClientSecure: implement connection timeout, fix connected method
behavior

	WiFiClient: fix write behavior when connection is closed by remote
side

	ESP8266HTTPServer: add font MIME types, fix #1601

	ESP8266mDNS: add client support

	Update SPIFFS to 82aeac6

	Servo: move some functions into IRAM (#1742)

	Update SoftwareSerial to version 3.1.0

	ESP8266SSDP: change templates to include deviceType

	ESP8266WebServer: handle more file types

	SPI: add CPOL setting

	ESP8266WebServer: Fix buffer overflow in
ESP8266WebServer::authenticate (#1790)

	ESP8266WiFi: fix undefined behavior in WiFiServer::setNoDelay (#1695)

	Servo: use peripheral clock frequency when calculating FRC1 tick
count (#1789)

	ESP8266WiFi: avoid multiple instances of INADDR_NONE

	Add LwIP binary built with gcc

	ESP8266WiFi: Allow PSK instead of passphrase in WiFiSTA::begin

	SPI: Fix SPI.transfer16() using wrong endianness

	HTTPClient: decouple transport layer handling + save some RAM

	ESP8266httpUpdate: decouple HTTPS overloads + save some RAM

	Update and move lwIP headers, add options to use different lwIP build

	ESP8266WebServer: wait for data to arrive

	ESP8266WebServer: save RAM by moving response strings to flash
(#1732)

	SPI: Speed up SPI.writePattern()

Tools

	Add ARM tools (#269)

2.0.0

November 30, 2015

Package link:
http://arduino.esp8266.com/versions/2.0.0/package_esp8266com_index.json.

Core

	Add file system APIs and documentation

	Add ConfigFile example

	Allow user to run code in user_rf_pre_init

	Add strtoul and strtol, fix strtod

	Update documentation for NodeMCU and Olimex boards

	Disable interrupts inside ESP.getVcc (#567)

	Erase RTC RAM only if RF mode looks invalid (#619)

	Get pin levels at time of interrupt, rather than the time of calling
the handler.

	Move interrupt handlers to ram.

	Improve debug output on critical errors

	Add ArduinoOTA library and docs

	Add WeMos D1 & D1 mini boards

	Add documentation about boot messages and mode meaning

	Disable sleep mode before doing OTA (#1005)

	Add the ability to be called back when the device is about to reset

	Add “Reset Method” menu

	Add MD5 to core

	I2C: generate STOP in case of NACK (fix #698, #254)

	Add libc time functions

	Fix linker script for 512k(no SPIFFS) variant (#966)

	I2S optimizations

	Support Sketch > Export compiled binary

	Update SPIFFS wrapper for 0.3.3

	Fix placement of code into RAM, enable gc-sections

	Make soft wdt reset more obvious

	Force disable IOSWAP for UART0 in HardwareSerial initialization
(#744)

	Add IPAddress::toString()

Libraries

	ESP8266WebServer: support for sending of PROGMEM strings

	ESP8266WebServer: support for serving files from file system

	ESP8266WiFi: fix mode selection (#529)

	ESP8266mDNS: allow to work on SoftAP interface

	EEPROM: round requested size to 4 bytes (#659)

	Add ESP8266AVRISP library

	Add ESP8266HTTPUpdate library

	Add HTTPClient library

	Add WiFiClientSecure

	ESP8266WiFi library: add persistent option, fix #1054

	Make RequestHandler handle uploads

	Add Digest Authentication to OTA and espota.py

	Don’t close UDP pcbs when WiFi connection drops (#969)

	Add espsoftwareserial library

	Add HTTP Updater library

	Add Ethernet library for W5100

	Add SPIFFS WebServer Example

	add dnsIP() to ESP8266WiFi class

	OTA support encapsulated to ArduinoOTA class

	Add gdb stub library

	Extracted the WebUpdate example into a library.

	Fix to Servo allowing write() to be called before attach()

	ESP8266WiFi: add function begin without any parameters and add
psk function to return current PSK form sdk config

	Fix a crash due to abort() called from TCP error callback (#428)

	Adding support for OPTIONS requests to ESP8266WebServer

	Add HTTPS request sample (#43)

	Fix _useClientMode & _useApMode in SDK auto connect mode (#754)

	Add ESP8266WebServer::sendContent_P with ‘size_t size’ argument for
binary content

	Fix bug in WiFiClient::write_P when content was binary

	Add WiFiClient::write_P to be used with PROGMEM

Tools

	Update SDK to 1.3.0_15_08_10_p1

	Update esptool to 0.4.6

	Bump toolchain version to force libm update on Windows

	ESP8266FS tool update

1.6.4-673-g8cd3697

May 22, 2015

Package link:
http://arduino.esp8266.com/versions/1.6.4-673-g8cd3697/package_esp8266com_index.json.

Tools

	Add 32-bit Linux toolchain.

	Rebuild toolchain and esptool with support for OS X down to 10.6.

Libraries

	Better connection handling in ESP8266WebServer. The server now sends
Content-Length and Connection: close headers, then waits for the
client to disconnect. By not closing the connection actively, server
avoids TIME_WAIT TCP state, and TCP stack is able to release the
memory immediately, without waiting for 2xMSL period. If the client
doesn’t disconnect in 2000ms, the server closes the connection
actively.

	Add Hash library, which has a function to calculate SHA1 hash.

	SD, Adafruit_ILI9341, and OneWire libraries are now bundled.

	Fix incorrect sector calculation in EEPROM library.

1.6.4-628-g545ffde

May 19, 2015

	Initial release of Boards Manager package for ESP8266 platform.

Index

Client Class

Methods documented for Client [https://www.arduino.cc/en/Reference/WiFiClientConstructor] in Arduino [https://github.com/arduino/Arduino]

	WiFiClient() [https://www.arduino.cc/en/Reference/WiFiClient]

	connected() [https://www.arduino.cc/en/Reference/WiFiClientConnected]

	connect() [https://www.arduino.cc/en/Reference/WiFiClientConnect]

	write() [https://www.arduino.cc/en/Reference/WiFiClientWrite]

	print() [https://www.arduino.cc/en/Reference/WiFiClientPrint]

	println() [https://www.arduino.cc/en/Reference/WiFiClientPrintln]

	available() [https://www.arduino.cc/en/Reference/WiFiClientAvailable]

	read() [https://www.arduino.cc/en/Reference/WiFiClientRead]

	flush() [https://www.arduino.cc/en/Reference/WiFiClientFlush]

	stop() [https://www.arduino.cc/en/Reference/WiFIClientStop]

Methods and properties described further down are specific to ESP8266. They are not covered in Arduino WiFi library [https://www.arduino.cc/en/Reference/WiFi] documentation. Before they are fully documented please refer to information below.

setNoDelay

setNoDelay(nodelay)

With nodelay set to true, this function will to disable Nagle algorithm [https://en.wikipedia.org/wiki/Nagle%27s_algorithm].

This algorithm is intended to reduce TCP/IP traffic of small packets sent over the network by combining a number of small outgoing messages, and sending them all at once. The downside of such approach is effectively delaying individual messages until a big enough packet is assembled.

Example:

client.setNoDelay(true);

Other Function Calls

uint8_t status ()
virtual size_t write (const uint8_t *buf, size_t size)
size_t write_P (PGM_P buf, size_t size)
size_t write (Stream &stream)
size_t write (Stream &stream, size_t unitSize) __attribute__((deprecated))
virtual int read (uint8_t *buf, size_t size)
virtual int peek ()
virtual size_t peekBytes (uint8_t *buffer, size_t length)
size_t peekBytes (char *buffer, size_t length)
virtual operator bool ()
IPAddress remoteIP ()
uint16_t remotePort ()
IPAddress localIP ()
uint16_t localPort ()
bool getNoDelay ()

Documentation for the above functions is not yet prepared.

For code samples please refer to separate section with examples
:arrow_right: dedicated specifically to the Client Class.

Client

Let’s write a simple client program to access a single web page and display its contents on a serial monitor. This is typical operation performed by a client to access server’s API to retrieve specific information. For instance we may want to contact GitHub’s API to periodically check the number of open issues reported on esp8266/Arduino [https://github.com/esp8266/Arduino/issues] repository.

Table of Contents

	Introduction

	Get Connected to Wi-Fi

	Select a Server

	Instantiate the Client

	Get Connected to the Server

	Request the Data

	Read Reply from the Server

	Now to the Sketch

	Test it Live

	Test it More

	Conclusion

Introduction

This time we are going to concentrate just on retrieving a web page contents sent by a server, to demonstrate basic client’s functionality. Once you are able to retrieve information from a server, you should be able to phrase it and extract specific data you need.

Get Connected to Wi-Fi

We should start with connecting the module to an access point to obtain an access to internet. The code to provide this functionality has been already discussed in chapter Quick Start. Please refer to it for details.

Select a Server

Once connected to the network we should connect to the specific server. Web address of this server is declared in host character string as below.

const char* host = "www.example.com";

I have selected www.example.com domain name and you can select any other. Just check if you can access it using a web browser.

[image: A web page to be retreived by the clinet program]
alt text

Instantiate the Client

Now we should declare a client that will be contacting the host (server):

WiFiClient client;

Get Connected to the Server

In next line we will connect to the host and check the connection result. Note 80, that is the standard port number used for web access.

if (client.connect(host, 80))
{
 // we are connected to the host!
}
else
{
 // connection failure
}

Request the Data

If connection is successful, we should send request the host to provide specific information we need. This is done using the HTTP GET [https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods] request as in the following lines:

client.print(String("GET /") + " HTTP/1.1\r\n" +
 "Host: " + host + "\r\n" +
 "Connection: close\r\n" +
 "\r\n"
);

Read Reply from the Server

Then, while connection by our client is still alive (while (client.connected()), see below) we can read line by line and print out server’s response:

while (client.connected())
{
 if (client.available())
 {
 String line = client.readStringUntil('\n');
 Serial.println(line);
 }
}

The inner if (client.available()) is checking if there are any data available from the server. If so, then they are printed out.

Once server sends all requested data it will disconnect and program will exit the while loop.

Now to the Sketch

Complete sketch, including a case when contention to the server fails, is presented below.

#include <ESP8266WiFi.h>

const char* ssid = "********";
const char* password = "********";

const char* host = "www.example.com";

void setup()
{
 Serial.begin(115200);
 Serial.println();

 Serial.printf("Connecting to %s ", ssid);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED)
 {
 delay(500);
 Serial.print(".");
 }
 Serial.println(" connected");
}

void loop()
{
 WiFiClient client;

 Serial.printf("\n[Connecting to %s ... ", host);
 if (client.connect(host, 80))
 {
 Serial.println("connected]");

 Serial.println("[Sending a request]");
 client.print(String("GET /") + " HTTP/1.1\r\n" +
 "Host: " + host + "\r\n" +
 "Connection: close\r\n" +
 "\r\n"
);

 Serial.println("[Response:]");
 while (client.connected())
 {
 if (client.available())
 {
 String line = client.readStringUntil('\n');
 Serial.println(line);
 }
 }
 client.stop();
 Serial.println("\n[Disconnected]");
 }
 else
 {
 Serial.println("connection failed!]");
 client.stop();
 }
 delay(5000);
}

Test it Live

Upload sketch the module and open serial monitor. You should see a log similar to presented below.

First, after establishing Wi-Fi connection, you should see confirmation, that client connected to the server and send the request:

Connecting to sensor-net connected

[Connecting to www.example.com ... connected]
[Sending a request]

Then, after getting the request, server will first respond with a header that specifies what type of information will follow (e.g. Content-Type: text/html), how long it is (like Content-Length: 1270), etc.:

[Response:]
HTTP/1.1 200 OK

Cache-Control: max-age=604800
Content-Type: text/html
Date: Sat, 30 Jul 2016 12:30:45 GMT
Etag: "359670651+ident"
Expires: Sat, 06 Aug 2016 12:30:45 GMT
Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
Server: ECS (ewr/15BD)
Vary: Accept-Encoding
X-Cache: HIT
x-ec-custom-error: 1
Content-Length: 1270
Connection: close

End of header is marked with an empty line and then you should see the HTML code of requested web page.

<!doctype html>
<html>
<head>
 <title>Example Domain</title>

 <meta charset="utf-8" />
 <meta http-equiv="Content-type" content="text/html; charset=utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <style type="text/css">

(...)

</head>

<body>
<div>
 <h1>Example Domain</h1>
 <p>This domain is established to be used for illustrative examples in documents. You may use this
 domain in examples without prior coordination or asking for permission.</p>
 <p>More information...</p>
</div>
</body>
</html>

[Disconnected]

Test it More

In case server’s web address is incorrect, or server is not accessible, you should see the following short and simple message on the serial monitor:

Connecting to sensor-net connected

[Connecting to www.wrong-example.com ... connection failed!]

Conclusion

With this simple example we have demonstrated how to set up a client program, connect it to a server, request a web page and retrieve it. Now you should be able to write your own client program for ESP8266 and move to more advanced dialogue with a server, like e.g. using HTTPS [https://en.wikipedia.org/wiki/HTTPS] protocol with the Client Secure .

For more client examples please check

	WiFiClientBasic.ino [https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/examples/WiFiClientBasic/WiFiClientBasic.ino] - a simple sketch that sends a message to a TCP server

	WiFiClient.ino [https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/examples/WiFiClient/WiFiClient.ino] - this sketch sends data via HTTP GET requests to data.sparkfun.com service.

For the list of functions provided to manage clients, please refer to the Client Class :arrow_right: documentation.

Client Secure Class

Methods and properties described in this section are specific to ESP8266. They are not covered in Arduino WiFi library [https://www.arduino.cc/en/Reference/WiFi] documentation. Before they are fully documented please refer to information below.

Supported crypto

In the background the library axtls [http://axtls.sourceforge.net] is used. The library supports only rsa certificates and no new eliptic curve certificates. TLSv1.2 is supported since SDK 2.4.0-rc1.

The following ciphers and digests are supported by specification [http://axtls.sourceforge.net/specifications.htm]:

	
	Symmetric Ciphers

	
	AES128-SHA

	AES256-SHA

	AES128-SHA256

	AES256-SHA256

	
	Asymmetric Ciphers

	
	RSA 512/1024/2048/4096 bit encryption/decryption.

	RSA signing/verification

	
	Digests

	
	SHA1

	MD5

	SHA256/384/512

	HMAC-SHA1

	HMAC-MD5

	HMAC-SHA256

loadCertificate

Load client certificate from file system.

loadCertificate(file)

Declarations

#include <FS.h>
#include <ESP8266WiFi.h>
#include <WiFiClientSecure.h>

const char* certyficateFile = "/client.cer";

setup() or loop()

if (!SPIFFS.begin())
{
 Serial.println("Failed to mount the file system");
 return;
}

Serial.printf("Opening %s", certyficateFile);
File crtFile = SPIFFS.open(certyficateFile, "r");
if (!crtFile)
{
 Serial.println(" Failed!");
}

WiFiClientSecure client;

Serial.print("Loading %s", certyficateFile);
if (!client.loadCertificate(crtFile))
{
 Serial.println(" Failed!");
}

// proceed with connecting of client to the host

setCertificate

Load client certificate from C array.

setCertificate (array, size)

For a practical example please check this interesting blog [https://nofurtherquestions.wordpress.com/2016/03/14/making-an-esp8266-web-accessible/].

Other Function Calls

bool verify (const char *fingerprint, const char *domain_name)
void setPrivateKey (const uint8_t *pk, size_t size)
bool loadCertificate (Stream &stream, size_t size)
bool loadPrivateKey (Stream &stream, size_t size)
template<typename TFile > bool loadPrivateKey (TFile &file)

Documentation for the above functions is not yet prepared.

For code samples please refer to separate section with examples dedicated specifically to the Client Secure Class.

Client Secure

The client secure is a client but secure. Application example below will be easier to follow if you check similar and simpler example for the “ordinary” client. That being said we will concentrate on discussing the code that is specific to the client secure.

Table of Contents

	Introduction

	The Sketch

	How to Verify Server’s
Identity?

	Get the Fingerprint

	Connect to the Server

	Is it THAT Server?

	GET Response from the Server

	Read and Check the Response

	Does it Work?

	Conclusion

Introduction

In this example we will be retrieving information from a secure server https://api.github.com. This server is set up in place to provide specific and structured information on GitHub [https://github.com] repositories. For instance, we may ask it to provide us the build status or the latest version of esp8266 /
Adruino [https://github.com/esp8266/Arduino/] core.

The build status of esp8266 / Adruino may be checked on the repository’s home page [https://github.com/esp8266/Arduino#using-git-version] or on Travis CI [https://travis-ci.org/esp8266/Arduino] site as below:

[image: Build status of esp8266 / Arduino repository on Travis CI site]
alt text

GitHub provides a separate server with API [https://developer.github.com/v3/] to access such information is structured form as JSON [https://en.wikipedia.org/wiki/JSON].

As you may guess we will use the client secure to contact https://api.github.com server and request the build status [https://developer.github.com/v3/repos/statuses/#get-the-combined-status-for-a-specific-ref]. If we open specific resource provided in the API with a web browser, the following should show up:

[image: Build status of esp8266 / Arduino repository in JSON fromat]
alt text

What we need to do, is to use client secure to connect to https://api.github.com, to GET /repos/esp8266/Arduino/commits/master/status, search for the line "state": "success" and display “Build Successful” if we find it, or “Build Failed” if otherwise.

The Sketch

A classic sketch [https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/examples/HTTPSRequest/HTTPSRequest.ino] that is doing what we need is already available among examples [https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi/examples] of ESP8266WiFi library. Please open it to go through it step by step.

How to Verify Server’s Identity?

To establish a secure connection with a server we need to verify server’s identity. Clients that run on “regular” computers do it by comparing server’s certificate with locally stored list of trusted root certificates. Such certificates take several hundreds of KB, so it is not a good option for an ESP module. As an alternative we can use much smaller SHA1 fingerprint of specific certificate.

In declaration section of code we provide the name of host and the corresponding fingerprint.

const char* host = "api.github.com";
const char* fingerprint = "CF 05 98 89 CA FF 8E D8 5E 5C E0 C2 E4 F7 E6 C3 C7 50 DD 5C";

Get the Fingerprint

We can obtain the fingerprint for specific host using a web browser. For instance on Chrome press Ctrl+Shift+I and go to Security > View Certificate > Details > Thumbprint. This will show a window like below where you can copy the fingerprint and paste it into sketch.

[image: Locating the fingerprint of GitHub api]
alt text

Remaining steps look almost identical as for the non-secure client example.

Connect to the Server

Instantiate the WiFiClientSecure object and establish a connection (please note we need to use specific httpsPort for secure connections):

WiFiClientSecure client;
Serial.print("connecting to ");
Serial.println(host);
if (!client.connect(host, httpsPort)) {
 Serial.println("connection failed");
 return;
}

Is it THAT Server?

Now verify if the fingerprint we have matches this one provided by the server:

if (client.verify(fingerprint, host)) {
 Serial.println("certificate matches");
} else {
 Serial.println("certificate doesn't match");
}

If this check fails, it is up to you to decide if to proceed further or abort connection. Also note that certificates have specific validity period. Therefore the fingerprint of certificate we have checked today, will certainly be invalid some time later.

GET Response from the Server

In the next steps we should execute GET command. This is done is similar way as discussed in non-secure client example.

client.print(String("GET ") + url + " HTTP/1.1\r\n" +
 "Host: " + host + "\r\n" +
 "User-Agent: BuildFailureDetectorESP8266\r\n" +
 "Connection: close\r\n\r\n");

After sending the request we should wait for a reply and then process received information.

Out of received replay we can skip response header. This can be done by reading until an empty line "\r" that marks the end of the header:

while (client.connected()) {
 String line = client.readStringUntil('\n');
 if (line == "\r") {
 Serial.println("headers received");
 break;
 }
}

Read and Check the Response

Finally we should read JSON provided by server and check if it contains {"state": "success":

String line = client.readStringUntil('\n');
if (line.startsWith("{\"state\":\"success\"")) {
 Serial.println("esp8266/Arduino CI successfull!");
} else {
 Serial.println("esp8266/Arduino CI has failed");
}

Does it Work?

Now once you know how it should work, get the sketch [https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/examples/HTTPSRequest/HTTPSRequest.ino]. Update credentials to your Wi-Fi network. Check the current fingerprint of api.github.com and update it if required. Then upload sketch and open a serial monitor.

If everything is fine (including build status of esp8266 / Arduino) you should see message as below:

connecting to sensor-net
........
WiFi connected
IP address:
192.168.1.104
connecting to api.github.com
certificate matches
requesting URL: /repos/esp8266/Arduino/commits/master/status
request sent
headers received
esp8266/Arduino CI successfull!
reply was:
==========
{"state":"success","statuses":[{"url":"https://api.github.com/repos/esp8266/Arduino/statuses/8cd331a8bae04a6f1443ff0c93539af4720d8ddf","id":677326372,"state":"success","description":"The Travis CI build passed","target_url":"https://travis-ci.org/esp8266/Arduino/builds/148827821","context":"continuous-integration/travis-ci/push","created_at":"2016-08-01T09:54:38Z","updated_at":"2016-08-01T09:54:38Z"},{"url":"https://api.github.com/repos/esp8266/Arduino/statuses/8cd331a8bae04a6f1443ff0c93539af4720d8ddf","id":677333081,"state":"success","description":"27.62% (+0.00%) compared to 0718188","target_url":"https://codecov.io/gh/esp8266/Arduino/commit/8cd331a8bae04a6f1443ff0c93539af4720d8ddf","context":"codecov/project","created_at":"2016-08-01T09:59:05Z","updated_at":"2016-08-01T09:59:05Z"},

(...)

==========
closing connection

Conclusion

Programming a secure client is almost identical as programming a non-secure client. The difference gets down to one extra step to verify server’s identity. Keep in mind limitations due to heavy memory usage that depends on the strength of the key used by the server and whether server is willing to negotiate the TLS buffer size [https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/].

For the list of functions provided to manage secure clients, please refer to the Client Secure Class
:arrow_right: documentation.

Generic Class

Methods and properties described in this section are specific to ESP8266. They are not covered in Arduino WiFi library [https://www.arduino.cc/en/Reference/WiFi] documentation. Before they are fully documented please refer to information below.

onEvent

void onEvent (WiFiEventCb cb, WiFiEvent_t event=WIFI_EVENT_ANY) __attribute__((deprecated))

To see how to use onEvent please check example sketch WiFiClientEvents.ino [https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/examples/WiFiClientEvents/WiFiClientEvents.ino] available inside examples folder of the ESP8266WiFi library.

WiFiEventHandler

WiFiEventHandler onStationModeConnected (std::function< void(const WiFiEventStationModeConnected &)>)
WiFiEventHandler onStationModeDisconnected (std::function< void(const WiFiEventStationModeDisconnected &)>)
WiFiEventHandler onStationModeAuthModeChanged (std::function< void(const WiFiEventStationModeAuthModeChanged &)>)
WiFiEventHandler onStationModeGotIP (std::function< void(const WiFiEventStationModeGotIP &)>)
WiFiEventHandler onStationModeDHCPTimeout (std::function< void(void)>)
WiFiEventHandler onSoftAPModeStationConnected (std::function< void(const WiFiEventSoftAPModeStationConnected &)>)
WiFiEventHandler onSoftAPModeStationDisconnected (std::function< void(const WiFiEventSoftAPModeStationDisconnected &)>)

To see a sample application with WiFiEventHandler, please check separate section with examples :arrow_right: dedicated specifically to the Generic Class..

persistent

WiFi.persistent (persistent)

Module is able to reconnect to last used Wi-Fi network on power up or reset basing on settings stored in specific sectors of flash memory. By default these settings are written to flash each time they are used in functions like WiFi.begin(ssid, password). This happens no matter if SSID or password has been actually changed.

This might result in some wear of flash memory depending on how often such functions are called.

Setting persistent to false will get SSID / password written to flash only if currently used values do not match what is already stored in flash.

Please note that functions WiFi.disconnect or WiFi.softAPdisconnect reset currently used SSID / password. If persistent is set to false, then using these functions will not affect SSID / password stored in flash.

To learn more about this functionality, and why it has been introduced, check issue report #1054 [https://github.com/esp8266/Arduino/issues/1054].

mode

WiFi.mode(m)
WiFi.getMode()

	WiFi.mode(m): set mode to WIFI_AP, WIFI_STA,
WIFI_AP_STA or WIFI_OFF

	WiFi.getMode(): return current Wi-Fi mode (one out of four modes
above)

Other Function Calls

int32_t channel (void)
bool setSleepMode (WiFiSleepType_t type)
WiFiSleepType_t getSleepMode ()
bool setPhyMode (WiFiPhyMode_t mode)
WiFiPhyMode_t getPhyMode ()
void setOutputPower (float dBm)
WiFiMode_t getMode ()
bool enableSTA (bool enable)
bool enableAP (bool enable)
bool forceSleepBegin (uint32 sleepUs=0)
bool forceSleepWake ()
int hostByName (const char *aHostname, IPAddress &aResult)

Documentation for the above functions is not yet prepared.

For code samples please refer to separate section with examples dedicated specifically to the Generic Class.

Generic

In the first example of the ESP8266WiFi library documentation we have discussed how to check when module connects to the Wi-Fi network. We were waiting until connection is established. If network is not available, the module could wait like that for ever doing nothing else. Another example on the Wi-Fi asynchronous scan mode demonstrated how to wait for scan result and do in parallel something else - blink a LED not disturbing the blink pattern. Let’s apply similar functionality when connecting the module to an access point.

Table of Contents

	Introduction

	What are the Tasks?

	Event Driven Methods

	Register the Events

	The Code

	Check the Code

	Conclusion

Introduction

In example below we will show another cool example of getting ESP perform couple of tasks at the same time and with very little programming.

What are the Tasks?

We would like to write a code that will inform us that connection to Wi-Fi network has been established or lost. At the same time we want to perform some time critical task. We will simulate it with a blinking LED. Generic class provides specific, event driven methods, that will be executed asynchronously, depending on e.g. connection status, while we are already doing other tasks.

Event Driven Methods

The list of all such methods is provided in Generic Class documentation.

We would like to use two of them: * onStationModeGotIP called when station is assigned IP address. This assignment may be done by DHCP client or by executing WiFi.config(...). * onStationModeDisconnected called when station is disconnected from Wi-Fi network. The reason of disconnection does not matter. Event will be triggered both if disconnection is done from the code by executing WiFi.disconnect(), because the Wi-Fi signal is weak, or because the access point is switched off.

Register the Events

To get events to work we need to complete just two steps:

	Declare the event handler:

cpp WiFiEventHandler disconnectedEventHandler;

	Select particular event (in this case onStationModeDisconnected)
and add the code to be executed when event is fired.

cpp disconnectedEventHandler = WiFi.onStationModeDisconnected([](const WiFiEventStationModeDisconnected& event) { Serial.println("Station disconnected"); }); If this event is fired the code will print out information that station has been disconnected.

That’s it. It is all we need to do.

The Code

The complete code, including both methods discussed at the beginning, is provided below.

#include <ESP8266WiFi.h>

const char* ssid = "********";
const char* password = "********";

WiFiEventHandler gotIpEventHandler, disconnectedEventHandler;

bool ledState;

void setup()
{
 Serial.begin(115200);
 Serial.println();

 pinMode(LED_BUILTIN, OUTPUT);

 gotIpEventHandler = WiFi.onStationModeGotIP([](const WiFiEventStationModeGotIP& event)
 {
 Serial.print("Station connected, IP: ");
 Serial.println(WiFi.localIP());
 });

 disconnectedEventHandler = WiFi.onStationModeDisconnected([](const WiFiEventStationModeDisconnected& event)
 {
 Serial.println("Station disconnected");
 });

 Serial.printf("Connecting to %s ...\n", ssid);
 WiFi.begin(ssid, password);
}

void loop()
{
 digitalWrite(LED_BUILTIN, ledState);
 ledState = !ledState;
 delay(250);
}

Check the Code

After uploading above sketch and opening a serial monitor we should see a similar log:

Connecting to sensor-net ...
Station connected, IP: 192.168.1.10

If you switch off the access point, and put it back on, you will see the following:

Station disconnected
Station disconnected
Station disconnected
Station connected, IP: 192.168.1.10

The process of connection, disconnection and printing messages is done in background of the loop() that is responsible for blinking the LED. Therefore the blink pattern all the time remains undisturbed.

Conclusion

Check out events from generic class. They will help you to write more compact code. Use them to practice splitting your code into separate tasks that are executed asynchronously.

For review of functions included in generic class, please refer to the Generic Class documentation.

Scan Class

This class is represented in Arduino WiFi library [https://www.arduino.cc/en/Reference/WiFi] by scanNetworks() [https://www.arduino.cc/en/Reference/WiFiScanNetworks] function. Developers of esp8266 / Arduino core extend this functionality by additional methods and properties.

Documentation of this class is divided into two parts. First covers functions to scan for available networks. Second describes what information is collected during scanning process and how to access it.

Scan for Networks

Scanning for networks takes hundreds of milliseconds to complete. This may be done in a single run when we are triggering scan process, waiting for completion, and providing result - all by a single function. Another option is to split this into steps, each done by a separate function. This way we can execute other tasks while scanning is in progress. This is called asynchronous scanning. Both methods of scanning are documented below.

scanNetworks

Scan for available Wi-Fi networks in one run and return the number of networks that has been discovered.

WiFi.scanNetworks()

There is on overload [https://en.wikipedia.org/wiki/Function_overloading] of this function that accepts two optional parameters to provide extended functionality of asynchronous scanning as well as looking for hidden networks.

WiFi.scanNetworks(async, show_hidden)

Both function parameters are of boolean type. They provide the flowing functionality: * asysnc - if set to true then scanning will start in background and function will exit without waiting for result. To check for result use separate function scanComplete that is described below. * show_hidden - set it to true to include in scan result networks with hidden SSID.

scanComplete

Check for result of asynchronous scanning.

WiFi.scanComplete()

On scan completion function returns the number of discovered networks.

If scan is not done, then returned value is < 0 as follows: * Scanning still in progress: -1 * Scanning has not been triggered: -2

scanDelete

Delete the last scan result from memory.

WiFi.scanDelete()

scanNetworksAsync

Start scanning for available Wi-Fi networks. On completion execute another function.

WiFi.scanNetworksAsync(onComplete, show_hidden)

Function parameters: * onComplete - the event handler executed
when the scan is done

* show_hidden - optional boolean parameter, set it to
true to scan for hidden networks

Example code:

#include "ESP8266WiFi.h"

void prinScanResult(int networksFound)
{
 Serial.printf("%d network(s) found\n", networksFound);
 for (int i = 0; i < networksFound; i++)
 {
 Serial.printf("%d: %s, Ch:%d (%ddBm) %s\n", i + 1, WiFi.SSID(i).c_str(), WiFi.channel(i), WiFi.RSSI(i), WiFi.encryptionType(i) == ENC_TYPE_NONE ? "open" : "");
 }
}

void setup()
{
 Serial.begin(115200);
 Serial.println();

 WiFi.mode(WIFI_STA);
 WiFi.disconnect();
 delay(100);

 WiFi.scanNetworksAsync(prinScanResult);
}

void loop() {}

Example output:

5 network(s) found
1: Tech_D005107, Ch:6 (-72dBm)
2: HP-Print-A2-Photosmart 7520, Ch:6 (-79dBm)
3: ESP_0B09E3, Ch:9 (-89dBm) open
4: Hack-4-fun-net, Ch:9 (-91dBm)
5: UPC Wi-Free, Ch:11 (-79dBm)

Show Results

Functions below provide access to result of scanning. It does not matter if scanning has been done in synchronous or asynchronous mode, scan results are available using the same API.

Individual results are accessible by providing a `networkItem’ that identifies the index (zero based) of discovered network.

SSID

Return the SSID of a network discovered during the scan.

WiFi.SSID(networkItem)

Returned SSID is of the String type. The networkItem is a zero based index of network discovered during scan.

encryptionType

Return the encryption type of a network discovered during the scan.

WiFi.encryptionType(networkItem)

Function returns a number that encodes encryption type as follows: * 5
: ENC_TYPE_WEP - WEP * 2 : ENC_TYPE_TKIP - WPA / PSK * 4 :
ENC_TYPE_CCMP - WPA2 / PSK * 7 : ENC_TYPE_NONE - open network
* 8 : ENC_TYPE_AUTO - WPA / WPA2 / PSK

The networkItem is a zero based index of network discovered during scan.

RSSI

Return the RSSI [https://en.wikipedia.org/wiki/Received_signal_strength_indication] (Received Signal Strength Indication) of a network discovered during the scan.

WiFi.RSSI(networkItem)

Returned RSSI is of the int32_t type. The networkItem is a zero based index of network discovered during scan.

BSSID

Return the BSSID [https://en.wikipedia.org/wiki/Service_set_(802.11_network)#Basic_service_set_identification_.28BSSID.29] (Basic Service Set Identification) that is another name of MAC address of a network discovered during the scan.

WiFi.BSSID(networkItem)

Function returns a pointer to the memory location (an uint8_t array with the size of 6 elements) where the BSSID is saved.

If you do not like to pointers, then there is another version of this function that returns a String.

WiFi.BSSIDstr(networkItem)

The networkItem is a zero based index of network discovered during scan.

channel

Return the channel of a network discovered during the scan.

WiFi.channel(networkItem)

Returned channel is of the int32_t type. The networkItem is a zero based index of network discovered during scan.

isHidden

Return information if a network discovered during the scan is hidden or not.

WiFi.isHidden(networkItem)

Returned value if the bolean type, and true means that network is hidden. The networkItem is a zero based index of network discovered during scan.

getNetworkInfo

Return all the network information discussed in this chapter above in a single function call.

WiFi.getNetworkInfo(networkItem, &ssid, &encryptionType, &RSSI, *&BSSID, &channel, &isHidden)

The networkItem is a zero based index of network discovered during scan. All other input parameters are passed to function by reference. Therefore they will be updated with actual values retrieved for particular networkItem. The function itself returns boolean true or false to confirm if information retrieval was successful or not.

Example code:

int n = WiFi.scanNetworks(false, true);

String ssid;
uint8_t encryptionType;
int32_t RSSI;
uint8_t* BSSID;
int32_t channel;
bool isHidden;

for (int i = 0; i < n; i++)
{
 WiFi.getNetworkInfo(i, ssid, encryptionType, RSSI, BSSID, channel, isHidden);
 Serial.printf("%d: %s, Ch:%d (%ddBm) %s %s\n", i + 1, ssid.c_str(), channel, RSSI, encryptionType == ENC_TYPE_NONE ? "open" : "", isHidden ? "hidden" : "");
}

Example output:

6 network(s) found
1: Tech_D005107, Ch:6 (-72dBm)
2: HP-Print-A2-Photosmart 7520, Ch:6 (-79dBm)
3: ESP_0B09E3, Ch:9 (-89dBm) open
4: Hack-4-fun-net, Ch:9 (-91dBm)
5: , Ch:11 (-77dBm) hidden
6: UPC Wi-Free, Ch:11 (-79dBm)

For code samples please refer to separate section with examples dedicated specifically to the Scan Class.

Scan

To connect a mobile phone to a hot spot, you typically open Wi-Fi settings app, list available networks and then pick the hot spot you need. You can also list the networks with ESP8266 and here is how.

Simple Scan

This example shows the bare minimum code we need to check for the list of available networks.

Disconnect

To start with, enable module in station mode and then disconnect.

WiFi.mode(WIFI_STA);
WiFi.disconnect();

Running WiFi.disconnect() is to shut down a connection to an access point that module may have automatically made using previously saved credentials.

Scan for Networks

After some delay to let the module disconnect, go to scanning for available networks:

int n = WiFi.scanNetworks();

Now just check if returned n if greater than 0 and list found networks:

for (int i = 0; i < n; i++)
{
 Serial.println(WiFi.SSID(i));
}

This is that simple.

Complete Example

The sketch should have obligatory #include <ESP8266WiFi.h> and looks as follows:

#include "ESP8266WiFi.h"

void setup()
{
 Serial.begin(115200);
 Serial.println();

 WiFi.mode(WIFI_STA);
 WiFi.disconnect();
 delay(100);
}

void loop()
{
 Serial.print("Scan start ... ");
 int n = WiFi.scanNetworks();
 Serial.print(n);
 Serial.println(" network(s) found");
 for (int i = 0; i < n; i++)
 {
 Serial.println(WiFi.SSID(i));
 }
 Serial.println();

 delay(5000);
}

Example in Action

Upload this sketch to ESP module and open a serial monitor. If there are access points around (sure there are) you will see a similar list repeatedly printed out:

Scan start ... 5 network(s) found
Tech_D005107
HP-Print-A2-Photosmart 7520
ESP_0B09E3
Hack-4-fun-net
UPC Wi-Free

When looking for the text scan start ... displayed, you will notice that it takes noticeable time for the following text n network(s) found to show up. This is because execution of WiFi.scanNetworks() takes time and our program is waiting for it to complete before moving to the next line of code. What if at the same time we would like ESP to run time critical process (e.g. animation)
that should not be disturbed?

It turns out that this is fairly easy to do by scanning networks in async mode.

Check it out in next example below that will also demonstrate printing out other parameters of available networks besides SSID.

Async Scan

What we like to do, is to trigger process of scanning for networks and then return to executing code inside the loop(). Once scanning is complete, at a convenient time, we will check the list of networks. The “time critical process” will be simulated by a blinking LED at 250ms period.

We would like the blinking pattern not be disturbed at any time.

No delay()

To implement such functionality we should refrain from using any delay() inside the loop(). Instead we will define period when to trigger particular action. Then inside loop() we will check millis() (internal clock that counts milliseconds) and fire the action if the period expires.

Please check how this is done in BlinkWithoutDelay.ino example sketch. Identical technique can be used to periodically trigger scanning for Wi-Fi networks.

Setup

First we should define scanning period and internal variable lastScanMillis that will hold time when the last scan has been made.

#define SCAN_PERIOD 5000
long lastScanMillis;

When to Start

Then inside the loop() we will check if SCAN_PERIOD expired, so it is time to fire next scan:

if (currentMillis - lastScanMillis > SCAN_PERIOD)
{
 WiFi.scanNetworks(true);
 Serial.print("\nScan start ... ");
 lastScanMillis = currentMillis;
}

Please note that WiFi.scanNetworks(true) has an extra parameter true that was not present in previous example above. This is an instruction to scan in asynchronous mode, i.e. trigger scanning process, do not wait for result (processing will be done in background) and move to the next line of code. We need to use asynchronous mode otherwise 250ms LED blinking pattern would be disturbed as scanning takes longer than 250ms.

Check When Done

Finally we should periodically check for scan completion to print out the result once ready. To do so, we will use function WiFi.scanComplete(), that upon completion returns the number of found networks. If scanning is still in progress it returns -1. If scanning has not been triggered yet, it would return -2.

int n = WiFi.scanComplete();
if(n >= 0)
{
 Serial.printf("%d network(s) found\n", n);
 for (int i = 0; i < n; i++)
 {
 Serial.printf("%d: %s, Ch:%d (%ddBm) %s\n", i+1, WiFi.SSID(i).c_str(), WiFi.channel(i), WiFi.RSSI(i), WiFi.encryptionType(i) == ENC_TYPE_NONE ? "open" : "");
 }
 WiFi.scanDelete();
}

Please note function WiFi.scanDelete() that is deleting scanning result from memory, so it is not printed out over and over again on each loop() run.

Complete Example

Complete sketch is below. The code inside setup() is the same as described in previous example except for an additional pinMode() to configure the output pin for LED.

#include "ESP8266WiFi.h"

#define BLINK_PERIOD 250
long lastBlinkMillis;
boolean ledState;

#define SCAN_PERIOD 5000
long lastScanMillis;

void setup()
 {
 Serial.begin(115200);
 Serial.println();

 pinMode(LED_BUILTIN, OUTPUT);

 WiFi.mode(WIFI_STA);
 WiFi.disconnect();
 delay(100);
}

void loop()
{
 long currentMillis = millis();

 // blink LED
 if (currentMillis - lastBlinkMillis > BLINK_PERIOD)
 {
 digitalWrite(LED_BUILTIN, ledState);
 ledState = !ledState;
 lastBlinkMillis = currentMillis;
 }

 // trigger Wi-Fi network scan
 if (currentMillis - lastScanMillis > SCAN_PERIOD)
 {
 WiFi.scanNetworks(true);
 Serial.print("\nScan start ... ");
 lastScanMillis = currentMillis;
 }

 // print out Wi-Fi network scan result uppon completion
 int n = WiFi.scanComplete();
 if(n >= 0)
 {
 Serial.printf("%d network(s) found\n", n);
 for (int i = 0; i < n; i++)
 {
 Serial.printf("%d: %s, Ch:%d (%ddBm) %s\n", i+1, WiFi.SSID(i).c_str(), WiFi.channel(i), WiFi.RSSI(i), WiFi.encryptionType(i) == ENC_TYPE_NONE ? "open" : "");
 }
 WiFi.scanDelete();
 }
}

Example in Action

Upload above sketch to ESP module and open a serial monitor. You should see similar list printed out every 5 seconds:

Scan start ... 5 network(s) found
1: Tech_D005107, Ch:6 (-72dBm)
2: HP-Print-A2-Photosmart 7520, Ch:6 (-79dBm)
3: ESP_0B09E3, Ch:9 (-89dBm) open
4: Hack-4-fun-net, Ch:9 (-91dBm)
5: UPC Wi-Free, Ch:11 (-79dBm)

Check the LED. It should be blinking undisturbed four times per second.

Conclusion

The scan class API provides comprehensive set of methods to do scanning in both synchronous as well as in asynchronous mode. Therefore we can easy implement code that is doing scanning in background without disturbing other processes running on ESP8266 module.

For the list of functions provided to manage scan mode please refer to the Scan Class documentation.

Server Class

Methods documented for the Server Class [https://www.arduino.cc/en/Reference/WiFiServerConstructor] in Arduino [https://github.com/arduino/Arduino]

	WiFiServer() [https://www.arduino.cc/en/Reference/WiFiServer]

	begin() [https://www.arduino.cc/en/Reference/WiFiServerBegin]

	available() [https://www.arduino.cc/en/Reference/WiFiServerAvailable]

	write() [https://www.arduino.cc/en/Reference/WiFiServerWrite]

	print() [https://www.arduino.cc/en/Reference/WiFiServerPrint]

	println() [https://www.arduino.cc/en/Reference/WiFiServerPrintln]

Methods and properties described further down are specific to ESP8266. They are not covered in Arduino WiFi library [https://www.arduino.cc/en/Reference/WiFi] documentation. Before they are fully documented please refer to information below.

setNoDelay

setNoDelay(nodelay)

With nodelay set to true, this function will to disable Nagle algorithm [https://en.wikipedia.org/wiki/Nagle%27s_algorithm].

This algorithm is intended to reduce TCP/IP traffic of small packets sent over the network by combining a number of small outgoing messages, and sending them all at once. The downside of such approach is effectively delaying individual messages until a big enough packet is assembled.

Example:

server.begin();
server.setNoDelay(true);

Other Function Calls

bool hasClient ()
bool getNoDelay ()
virtual size_t write (const uint8_t *buf, size_t size)
uint8_t status ()
void close ()
void stop ()

Documentation for the above functions is not yet prepared.

For code samples please refer to separate section with examples dedicated specifically to the Server Class.

Server

Setting up web a server on ESP8266 requires very little code and is surprisingly straightforward. This is thanks to functionality provided by the versatile ESP8266WiFi library.

The purpose of this example will be to prepare a web page that can be opened in a web browser. This page should show the current raw reading of ESP’s analog input pin.

Table of Contents

	The Object

	The Page

	Header First

	The Page is Served

	Get it Together

	Get it Run

	What Else?

	Conclusion

The Object

We will start off by creating a server object.

WiFiServer server(80);

The server responds to clients (in this case - web browsers) on port 80, which is a standard port web browsers talk to web servers.

The Page

Then let’s write a short function prepareHtmlPage(), that will return a String class variable containing the contents of the web page. We will then pass this variable to server to pass it over to a client.

String prepareHtmlPage()
{
 String htmlPage =
 String("HTTP/1.1 200 OK\r\n") +
 "Content-Type: text/html\r\n" +
 "Connection: close\r\n" + // the connection will be closed after completion of the response
 "Refresh: 5\r\n" + // refresh the page automatically every 5 sec
 "\r\n" +
 "<!DOCTYPE HTML>" +
 "<html>" +
 "Analog input: " + String(analogRead(A0)) +
 "</html>" +
 "\r\n";
 return htmlPage;
}

The function does nothing fancy but just puts together a text header and HTML [http://www.w3schools.com/html/] contents of the page.

Header First

The header is to inform client what type of contents is to follow and how it will be served:

Content-Type: text/html
Connection: close
Refresh: 5

In our example the content type is text/html, the connection will be closed after serving and the content should be requested by the client again every 5 seconds. The header is concluded with an empty line \r\n. This is to distinguish header from the content to follow.

<!DOCTYPE HTML>
<html>
Analog input: [Value]
</html>

The content contains two basic HTML [http://www.w3schools.com/html/] tags, one to denote HTML document type <!DOCTYPE HTML> and another to mark beginning <html> and end </html> of the document. Inside there is a raw value read from ESP’s analog input analogRead(A0) converted to the String type.

String(analogRead(A0))

The Page is Served

Serving of this web page will be done in the loop() where server is waiting for a new client to connect and send some data containing a request:

void loop()
{
 WiFiClient client = server.available();
 if (client)
 {
 // we have a new client sending some request
 }
}

Once a new client is connected, server will read the client’s request and print it out on a serial monitor.

while (client.connected())
{
 if (client.available())
 {
 String line = client.readStringUntil('\r');
 Serial.print(line);
 }
}

Request from the client is marked with an empty new line. If we find this mark, we can send back the web page and exit while() loop using break.

if (line.length() == 1 && line[0] == '\n')
{
 client.println(prepareHtmlPage());
 break;
}

The whole process is concluded by stopping the connection with client:

client.stop();

Put it Together

Complete sketch is presented below.

#include <ESP8266WiFi.h>

const char* ssid = "********";
const char* password = "********";

WiFiServer server(80);

void setup()
{
 Serial.begin(115200);
 Serial.println();

 Serial.printf("Connecting to %s ", ssid);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED)
 {
 delay(500);
 Serial.print(".");
 }
 Serial.println(" connected");

 server.begin();
 Serial.printf("Web server started, open %s in a web browser\n", WiFi.localIP().toString().c_str());
}

// prepare a web page to be send to a client (web browser)
String prepareHtmlPage()
{
 String htmlPage =
 String("HTTP/1.1 200 OK\r\n") +
 "Content-Type: text/html\r\n" +
 "Connection: close\r\n" + // the connection will be closed after completion of the response
 "Refresh: 5\r\n" + // refresh the page automatically every 5 sec
 "\r\n" +
 "<!DOCTYPE HTML>" +
 "<html>" +
 "Analog input: " + String(analogRead(A0)) +
 "</html>" +
 "\r\n";
 return htmlPage;
}

void loop()
{
 WiFiClient client = server.available();
 // wait for a client (web browser) to connect
 if (client)
 {
 Serial.println("\n[Client connected]");
 while (client.connected())
 {
 // read line by line what the client (web browser) is requesting
 if (client.available())
 {
 String line = client.readStringUntil('\r');
 Serial.print(line);
 // wait for end of client's request, that is marked with an empty line
 if (line.length() == 1 && line[0] == '\n')
 {
 client.println(prepareHtmlPage());
 break;
 }
 }
 }
 delay(1); // give the web browser time to receive the data

 // close the connection:
 client.stop();
 Serial.println("[Client disonnected]");
 }
}

Get it Run

Update ssid and password in sketch to match credentials of your access point. Load sketch to ESP module and open a serial monitor. First you should see confirmation that module connected to the access point and the web server started.

Connecting to sensor-net connected
Web server started, open 192.168.1.104 in a web browser

Enter provided IP address in a web browser. You should see the page served by ESP8266:

[image: Output from server in a web browser]
alt text

The page would be refreshed every 5 seconds. Each time this happens, you should see a request from the client (your web browser) printed out on the serial monitor:

[Client connected]
GET / HTTP/1.1
Accept: text/html, application/xhtml+xml, */*
Accept-Language: en-US
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko
Accept-Encoding: gzip, deflate
Host: 192.168.1.104
DNT: 1
Connection: Keep-Alive
[client disonnected]

What Else?

Looking on client examples you will quickly find out the similarities in protocol to the server. The protocol starts with a header that contains information what communication will be about. It contains what content type is communicated or accepted like text/html. It states whether connection will be kept alive or closed after submission of the header. It contains identification of the sender like User-Agent: Mozilla/5.0 (Windows NT 6.1), etc.

Conclusion

The above example shows that a web server on ESP8266 can be set up in almost no time. Such server can easily stand up requests from much more powerful hardware and software like a PC with a web browser. Check out other classes like ESP8266WebServer [https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WebServer] that let you program more advanced applications.

If you like to try another server example, check out WiFiWebServer.ino [https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/examples/WiFiWebServer/WiFiWebServer.ino], that provides functionality of toggling the GPIO pin on and off out of a web browser.

For the list of functions provided to implement and manage servers, please refer to the Server Class documentation.

Soft Access Point Class

Section below is ESP8266 specific as Arduino WiFi library [https://www.arduino.cc/en/Reference/WiFi] documentation does not cover soft access point. The API description is broken down into three short chapters. They cover how to setup soft-AP, manage connection, and obtain information on soft-AP interface configuration.

Table of Contents

	Set up Network

	softAP

	softAPConfig

	Manage Network

	softAPdisconnect

	softAPgetStationNum

	Network Configuration

	softAPIP

	softAPmacAddress

Set up Network

This section describes functions to set up and configure ESP8266 in the soft access point (soft-AP) mode.

softAP

Set up a soft access point to establish a Wi-Fi network.

The simplest version (an overload in C++
terms [https://en.wikipedia.org/wiki/Function_overloading]) of this function requires only one parameter and is used to set up an open Wi-Fi network.

WiFi.softAP(ssid)

To set up password protected network, or to configure additional network parameters, use the following overload:

WiFi.softAP(ssid, password, channel, hidden)

The first parameter of this function is required, remaining three are optional.

Meaning of all parameters is as follows: - ssid - character string containing network SSID (max. 63 characters) * password - optional character string with a password. For WPA2-PSK network it should be at least 8 character long. If not specified, the access point will be open for anybody to connect. * channel - optional parameter to set Wi-Fi channel, from 1 to 13. Default channel = 1. * hidden - optional parameter, if set to true will hide SSID

Function will return true or false depending on result of setting the soft-AP.

Notes: * The network established by softAP will have default IP address of 192.168.4.1. This address may be changed using softAPConfig (see below). * Even though ESP8266 can operate in soft-AP + station mode, it actually has only one hardware channel. Therefore in soft-AP + station mode, the soft-AP channel will default to the number used by station. For more information how this may affect operation of stations connected to ESP8266’s soft-AP, please check this FAQ entry [http://bbs.espressif.com/viewtopic.php?f=10&t=324] on Espressif forum.

softAPConfig

Configure the soft access point’s network interface.

softAPConfig (local_ip, gateway, subnet)

All parameters are the type of IPAddress and defined as follows:
* local_ip - IP address of the soft access point * gateway -
gateway IP address

* subnet - subnet mask

Function will return true or false depending on result of changing the configuration.

Example code:

#include <ESP8266WiFi.h>

IPAddress local_IP(192,168,4,22);
IPAddress gateway(192,168,4,9);
IPAddress subnet(255,255,255,0);

void setup()
{
 Serial.begin(115200);
 Serial.println();

 Serial.print("Setting soft-AP configuration ... ");
 Serial.println(WiFi.softAPConfig(local_IP, gateway, subnet) ? "Ready" : "Failed!");

 Serial.print("Setting soft-AP ... ");
 Serial.println(WiFi.softAP("ESPsoftAP_01") ? "Ready" : "Failed!");

 Serial.print("Soft-AP IP address = ");
 Serial.println(WiFi.softAPIP());
}

void loop() {}

Example output:

Setting soft-AP configuration ... Ready
Setting soft-AP ... Ready
Soft-AP IP address = 192.168.4.22

Manage Network

Once soft-AP is established you may check the number of stations connected, or shut it down, using the following functions.

softAPgetStationNum

Get the count of the stations that are connected to the soft-AP interface.

WiFi.softAPgetStationNum()

Example code:

Serial.printf("Stations connected to soft-AP = %d\n", WiFi.softAPgetStationNum());

Example output:

Stations connected to soft-AP = 2

Note: the maximum number of stations that may be connected to ESP8266 soft-AP is five.

softAPdisconnect

Disconnect stations from the network established by the soft-AP.

WiFi.softAPdisconnect(wifioff)

Function will set currently configured SSID and password of the soft-AP to null values. The parameter wifioff is optional. If set to true it will switch the soft-AP mode off.

Function will return true if operation was successful or false if otherwise.

Network Configuration

Functions below provide IP and MAC address of ESP8266’s soft-AP.

softAPIP

Return IP address of the soft access point’s network interface.

WiFi.softAPIP()

Returned value is of IPAddress type.

Example code:

Serial.print("Soft-AP IP address = ");
Serial.println(WiFi.softAPIP());

Example output:

Soft-AP IP address = 192.168.4.1

softAPmacAddress

Return MAC address of soft access point. This function comes in two versions, which differ in type of returned values. First returns a pointer, the second a String.

Pointer to MAC

WiFi.softAPmacAddress(mac)

Function accepts one parameter mac that is a pointer to memory location (an uint8_t array the size of 6 elements) to save the mac address. The same pointer value is returned by the function itself.

Example code:

uint8_t macAddr[6];
WiFi.softAPmacAddress(macAddr);
Serial.printf("MAC address = %02x:%02x:%02x:%02x:%02x:%02x\n", macAddr[0], macAddr[1], macAddr[2], macAddr[3], macAddr[4], macAddr[5]);

Example output:

MAC address = 5e:cf:7f:8b:10:13

MAC as a String

Optionally you can use function without any parameters that returns a String type value.

WiFi.softAPmacAddress()

Example code:

Serial.printf("MAC address = %s\n", WiFi.softAPmacAddress().c_str());

Example output:

MAC address = 5E:CF:7F:8B:10:13

For code samples please refer to separate section with examples dedicated specifically to the Soft Access Point Class.

Soft Access Point

Example below presents how to configure ESP8266 to run in soft access point mode so Wi-Fi stations can connect to it. The Wi-Fi network established by the soft-AP will be identified with the SSID set during configuration. The network may be protected with a password. The network may be also open, if no password is set during configuration.

Table of Contents

	The Sketch

	How to Use It?

	How Does it Work?

	Can we Make it Simpler?

	Conclusion

The Sketch

Setting up soft-AP with ESP8266 can be done with just couple lines of code.

#include <ESP8266WiFi.h>

void setup()
{
 Serial.begin(115200);
 Serial.println();

 Serial.print("Setting soft-AP ... ");
 boolean result = WiFi.softAP("ESPsoftAP_01", "pass-to-soft-AP");
 if(result == true)
 {
 Serial.println("Ready");
 }
 else
 {
 Serial.println("Failed!");
 }
}

void loop()
{
 Serial.printf("Stations connected = %d\n", WiFi.softAPgetStationNum());
 delay(3000);
}

How to Use It?

In line boolean result = WiFi.softAP("ESPsoftAP_01", "pass-to-soft-AP") change pass-to-soft-AP to some meaningful password and upload sketch. Open serial monitor and you should see:

Setting soft-AP ... Ready
Stations connected = 0
Stations connected = 0
...

Then take your mobile phone or a PC, open the list of available access points, find ESPsoftAP_01 and connect to it. This should be reflected on serial monitor as a new station connected:

Stations connected = 1
Stations connected = 1
...

If you have another Wi-Fi station available then connect it as well. Check serial monitor again where you should now see two stations reported.

How Does it Work?

Sketch is small so analysis shouldn’t be difficult. In first line we are including ESP8266WiFi library:

#include <ESP8266WiFi.h>

Setting up of the access point ESPsoftAP_01 is done by executing:

cpp boolean result = WiFi.softAP("ESPsoftAP_01", "pass-to-soft-AP");

If this operation is successful then result will be true or false if otherwise. Basing on that either Ready or Failed! will be printed out by the following if - else conditional statement.

Can we Make it Simpler?

Can we make this sketch even simpler? Yes, we can! We can do it by using alternate if - else statement as below:

WiFi.softAP("ESPsoftAP_01", "pass-to-soft-AP") ? "Ready" : "Failed!"

Such statement will return either Ready or Failed! depending on result of WiFi.softAP(...). This way we can considerably shorten our sketch without any changes to functionality:

#include <ESP8266WiFi.h>

void setup()
{
 Serial.begin(115200);
 Serial.println();

 Serial.print("Setting soft-AP ... ");
 Serial.println(WiFi.softAP("ESPsoftAP_01", "pass-to-soft-AP") ? "Ready" : "Failed!");
}

void loop()
{
 Serial.printf("Stations connected = %d\n", WiFi.softAPgetStationNum());
 delay(3000);
}

I believe this is very neat piece of code. If ? : conditional operator is new to you, I recommend to start using it and make your code shorter and more elegant.

Conclusion

ESP8266WiFi [https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi] library makes it easy to turn ESP8266 into soft access point.

Once you try above sketch check out WiFiAccessPoint.ino [https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/examples/WiFiAccessPoint/WiFiAccessPoint.ino] as a next step. It demonstrates how to access ESP operating in soft-AP mode from a web browser.

For the list of functions to manage ESP module in soft-AP mode please refer to the Soft Access Point Class documentation.

Station Class

The number of features provided by ESP8266 in the station mode is far more extensive than covered in original Arduino WiFi library [https://www.arduino.cc/en/Reference/WiFi]. Therefore, instead of supplementing original documentation, we have decided to write a new one from scratch.

Description of station class has been broken down into four parts. First discusses methods to establish connection to an access point. Second provides methods to manage connection like e.g. reconnect or isConnected. Third covers properties to obtain information about connection like MAC or IP address. Finally the fourth section provides alternate methods to connect like e.g. Wi-Fi Protected Setup (WPS).

Table of Contents

	Start Here

	begin

	config

	Manage Connection

	reconnect

	disconnect

	isConnected

	setAutoConnect

	getAutoConnect

	setAutoReconnect

	waitForConnectResult

	Configuration

	macAddress

	localIP

	subnetMask

	gatewayIP

	dnsIP

	hostname

	status

	SSID

	psk

	BSSID

	RSSI

	Connect Different

	WPS

	Smart Config

Points below provide description and code snippets how to use particular methods.

For more code samples please refer to separate section with examples dedicated specifically to the Station Class.

Start Here

Switching the module to Station mode is done with begin function. Typical parameters passed to begin include SSID and password, so module can connect to specific Access Point.

WiFi.begin(ssid, password)

By default, ESP will attempt to reconnect to Wi-Fi network whenever it is disconnected. There is no need to handle this by separate code. A good way to simulate disconnection would be to reset the access point. ESP will report disconnection, and then try to reconnect automatically.

begin

There are several versions (called `function overloads <https://en.wikipedia.org/wiki/Function_overloading>`__ in C++) of begin function. One was presented just above:
WiFi.begin(ssid, password). Overloads provide flexibility in number or type of accepted parameters.

The simplest overload of begin is as follows:

WiFi.begin()

Calling it will instruct module to switch to the station mode and connect to the last used access point basing on configuration saved in flash memory.

Below is the syntax of another overload of begin with the all possible parameters:

WiFi.begin(ssid, password, channel, bssid, connect)

Meaning of parameters is as follows: * ssid - a character string containing the SSID of Access Point we would like to connect to, may have up to 32 characters * password to the access point, a character string that should be minimum 8 characters long and not longer than 64 characters * channel of AP, if we like to operate using specific channel, otherwise this parameter may be omitted * bssid -
mac address of AP, this parameter is also optional * connect - a boolean parameter that if set to false, will instruct module just to save the other parameters without actually establishing connection to the access point

config

Disable DHCP [https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol] client (Dynamic Host Configuration Protocol) and set the IP configuration of station interface to user defined arbitrary values. The interface will be a static IP configuration instead of values provided by DHCP.

WiFi.config(local_ip, gateway, subnet, dns1, dns2)

Function will return true if configuration change is applied successfully. If configuration can not be applied, because e.g. module is not in station or station + soft access point mode, then false will be returned.

The following IP configuration may be provided:

	local_ip - enter here IP address you would like to assign the ESP
station’s interface

	gateway - should contain IP address of gateway (a router) to
access external networks

	subnet - this is a mask that defines the range of IP addresses of
the local network

	dns1, dns2 - optional parameters that define IP addresses of
Domain Name Servers (DNS) that maintain a directory of domain names
(like e.g. www.google.co.uk) and translate them for us to IP
addresses

Example code:

#include <ESP8266WiFi.h>

const char* ssid = "********";
const char* password = "********";

IPAddress staticIP(192,168,1,22);
IPAddress gateway(192,168,1,9);
IPAddress subnet(255,255,255,0);

void setup(void)
{
 Serial.begin(115200);
 Serial.println();

 Serial.printf("Connecting to %s\n", ssid);
 WiFi.begin(ssid, password);
 WiFi.config(staticIP, gateway, subnet);
 while (WiFi.status() != WL_CONNECTED)
 {
 delay(500);
 Serial.print(".");
 }
 Serial.println();
 Serial.print("Connected, IP address: ");
 Serial.println(WiFi.localIP());
}

void loop() {}

Example output:

Connecting to sensor-net
.
Connected, IP address: 192.168.1.22

Please note that station with static IP configuration usually connects to the network faster. In the above example it took about 500ms (one dot . displayed). This is because obtaining of IP configuration by DHCP client takes time and in this case this step is skipped. If you pass all three parameter as 0.0.0.0 (local_ip, gateway and subnet), it will re enable DHCP. You need to re-connect the device to get new IPs.

Manage Connection

reconnect

Reconnect the station. This is done by disconnecting from the access point an then initiating connection back to the same AP.

WiFi.reconnect()

Notes: 1. Station should be already connected to an access point. If this is not the case, then function will return false not performing any action. 2. If true is returned it means that connection sequence has been successfully started. User should still check for connection status, waiting until WL_CONNECTED is reported:

WiFi.reconnect();
while (WiFi.status() != WL_CONNECTED)
{
 delay(500);
 Serial.print(".");
}

disconnect

Sets currently configured SSID and password to null values and disconnects the station from an access point.

WiFi.disconnect(wifioff)

The wifioff is an optional boolean parameter. If set to true, then the station mode will be turned off.

isConnected

Returns true if Station is connected to an access point or false if not.

WiFi.isConnected()

setAutoConnect

Configure module to automatically connect on power on to the last used access point.

WiFi.setAutoConnect(autoConnect)

The autoConnect is an optional parameter. If set to false then auto connection functionality up will be disabled. If omitted or set to true, then auto connection will be enabled.

getAutoConnect

This is “companion” function to setAutoConnect(). It returns true if module is configured to automatically connect to last used access point on power on.

WiFi.getAutoConnect()

If auto connection functionality is disabled, then function returns false.

setAutoReconnect

Set whether module will attempt to reconnect to an access point in case it is disconnected.

WiFi.setAutoReconnect(autoReconnect)

If parameter autoReconnect is set to true, then module will try to reestablish lost connection to the AP. If set to false then module will stay disconnected.

Note: running setAutoReconnect(true) when module is already disconnected will not make it reconnect to the access point. Instead reconnect() should be used.

waitForConnectResult

Wait until module connects to the access point. This function is intended for module configured in station or station + soft access point mode.

WiFi.waitForConnectResult()

Function returns one of the following connection statuses: * WL_CONNECTED after successful connection is established * WL_NO_SSID_AVAILin case configured SSID cannot be reached * WL_CONNECT_FAILED if password is incorrect * WL_IDLE_STATUS when Wi-Fi is in process of changing between statuses * WL_DISCONNECTED if module is not configured in station mode

Configuration

macAddress

Get the MAC address of the ESP station’s interface.

WiFi.macAddress(mac)

Function should be provided with mac that is a pointer to memory location (an uint8_t array the size of 6 elements) to save the mac address. The same pointer value is returned by the function itself.

Example code:

if (WiFi.status() == WL_CONNECTED)
{
 uint8_t macAddr[6];
 WiFi.macAddress(macAddr);
 Serial.printf("Connected, mac address: %02x:%02x:%02x:%02x:%02x:%02x\n", macAddr[0], macAddr[1], macAddr[2], macAddr[3], macAddr[4], macAddr[5]);
}

Example output:

Mac address: 5C:CF:7F:08:11:17

If you do not feel comfortable with pointers, then there is optional version of this function available. Instead of the pointer, it returns a formatted String that contains the same mac address.

WiFi.macAddress()

Example code:

if (WiFi.status() == WL_CONNECTED)
{
 Serial.printf("Connected, mac address: %s\n", WiFi.macAddress().c_str());
}

localIP

Function used to obtain IP address of ESP station’s interface.

WiFi.localIP()

The type of returned value is IPAddress [https://github.com/esp8266/Arduino/blob/master/cores/esp8266/IPAddress.h]. There is a couple of methods available to display this type of data. They are presented in examples below that cover description of subnetMask, gatewayIP and dnsIP that return the IPAdress as well.

Example code:

if (WiFi.status() == WL_CONNECTED)
{
 Serial.print("Connected, IP address: ");
 Serial.println(WiFi.localIP());
}

Example output:

Connected, IP address: 192.168.1.10

subnetMask

Get the subnet mask of the station’s interface.

WiFi.subnetMask()

Module should be connected to the access point to obtain the subnet mask.

Example code:

Serial.print("Subnet mask: ");
Serial.println(WiFi.subnetMask());

Example output:

Subnet mask: 255.255.255.0

gatewayIP

Get the IP address of the gateway.

WiFi.gatewayIP()

Example code:

Serial.printf("Gataway IP: %s\n", WiFi.gatewayIP().toString().c_str());

Example output:

Gataway IP: 192.168.1.9

dnsIP

Get the IP addresses of Domain Name Servers (DNS).

WiFi.dnsIP(dns_no)

With the input parameter dns_no we can specify which Domain Name Server’s IP we need. This parameter is zero based and allowed values are none, 0 or 1. If no parameter is provided, then IP of DNS #1 is returned.

Example code:

Serial.print("DNS #1, #2 IP: ");
WiFi.dnsIP().printTo(Serial);
Serial.print(", ");
WiFi.dnsIP(1).printTo(Serial);
Serial.println();

Example output:

DNS #1, #2 IP: 62.179.1.60, 62.179.1.61

hostname

Get the DHCP hostname assigned to ESP station.

WiFi.hostname()

Function returns String type. Default hostname is in format ESP_24xMACwhere 24xMAC are the last 24 bits of module’s MAC address.

The hostname may be changed using the following function:

WiFi.hostname(aHostname)

Input parameter aHostname may be a type of char*, const char* or String. Maximum length of assigned hostname is 32 characters. Function returns either true or false depending on result. For instance, if the limit of 32 characters is exceeded, function will return false without assigning the new hostname.

Example code:

Serial.printf("Default hostname: %s\n", WiFi.hostname().c_str());
WiFi.hostname("Station_Tester_02");
Serial.printf("New hostname: %s\n", WiFi.hostname().c_str());

Example output:

Default hostname: ESP_081117
New hostname: Station_Tester_02

status

Return the status of Wi-Fi connection.

WiFi.status()

Function returns one of the following connection statuses: * WL_CONNECTED after successful connection is established * WL_NO_SSID_AVAILin case configured SSID cannot be reached * WL_CONNECT_FAILED if password is incorrect * WL_IDLE_STATUS when Wi-Fi is in process of changing between statuses * WL_DISCONNECTED if module is not configured in station mode

Returned value is type of wl_status_t defined in wl_definitions.h [https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/src/include/wl_definitions.h]

Example code:

#include <ESP8266WiFi.h>

void setup(void)
{
 Serial.begin(115200);
 Serial.printf("Connection status: %d\n", WiFi.status());
 Serial.printf("Connecting to %s\n", ssid);
 WiFi.begin(ssid, password);
 Serial.printf("Connection status: %d\n", WiFi.status());
 while (WiFi.status() != WL_CONNECTED)
 {
 delay(500);
 Serial.print(".");
 }
 Serial.printf("\nConnection status: %d\n", WiFi.status());
 Serial.print("Connected, IP address: ");
 Serial.println(WiFi.localIP());
}

void loop() {}

Example output:

Connection status: 6
Connecting to sensor-net
Connection status: 6
......
Connection status: 3
Connected, IP address: 192.168.1.10

Particular connection statuses 6 and 3 may be looked up in wl_definitions.h [https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/src/include/wl_definitions.h] as follows:

3 - WL_CONNECTED
6 - WL_DISCONNECTED

Basing on this example, when running above code, module is initially disconnected from the network and returns connection status 6 - WL_DISCONNECTED. It is also disconnected immediately after running WiFi.begin(ssid, password). Then after about 3 seconds (basing on number of dots displayed every 500ms), it finally gets connected returning status 3 - WL_CONNECTED.

SSID

Return the name of Wi-Fi network, formally called Service Set Identification (SSID) [http://www.juniper.net/techpubs/en_US/network-director1.1/topics/concept/wireless-ssid-bssid-essid.html#jd0e34].

WiFi.SSID()

Returned value is of the String type.

Example code:

Serial.printf("SSID: %s\n", WiFi.SSID().c_str());

Example output:

SSID: sensor-net

psk

Return current pre shared key (password) associated with the Wi-Fi network.

WiFi.psk()

Function returns value of the String type.

BSSID

Return the mac address the access point where ESP module is connected to. This address is formally called Basic Service Set Identification (BSSID) [http://www.juniper.net/techpubs/en_US/network-director1.1/topics/concept/wireless-ssid-bssid-essid.html#jd0e47].

WiFi.BSSID()

The BSSID() function returns a pointer to the memory location (an uint8_t array with the size of 6 elements) where the BSSID is saved.

Below is similar function, but returning BSSID but as a String type.

WiFi.BSSIDstr()

Example code:

Serial.printf("BSSID: %s\n", WiFi.BSSIDstr().c_str());

Example output:

BSSID: 00:1A:70:DE:C1:68

RSSI

Return the signal strength of Wi-Fi network, that is formally called Received Signal Strength Indication (RSSI) [https://en.wikipedia.org/wiki/Received_signal_strength_indication].

WiFi.RSSI()

Signal strength value is provided in dBm. The type of returned value is int32_t.

Example code:

Serial.printf("RSSI: %d dBm\n", WiFi.RSSI());

Example output:

RSSI: -68 dBm

Connect Different

ESP8266 SDK [http://bbs.espressif.com/viewtopic.php?f=51&t=1023] provides alternate methods to connect ESP station to an access point. Out of them esp8266 / Arduino [https://github.com/esp8266/Arduino] core implements WPS and Smart Config as described in more details below.

WPS

The following beginWPSConfig function allows connecting to a network using Wi-Fi Protected Setup (WPS) [https://en.wikipedia.org/wiki/Wi-Fi_Protected_Setup]. Currently only push-button configuration [http://www.wi-fi.org/knowledge-center/faq/how-does-wi-fi-protected-setup-work] (WPS_TYPE_PBC mode) is supported (SDK 1.5.4).

WiFi.beginWPSConfig()

Depending on connection result function returns either true or false (boolean type).

Example code:

#include <ESP8266WiFi.h>

void setup(void)
{
 Serial.begin(115200);
 Serial.println();

 Serial.printf("Wi-Fi mode set to WIFI_STA %s\n", WiFi.mode(WIFI_STA) ? "" : "Failed!");
 Serial.print("Begin WPS (press WPS button on your router) ... ");
 Serial.println(WiFi.beginWPSConfig() ? "Success" : "Failed");

 while (WiFi.status() != WL_CONNECTED)
 {
 delay(500);
 Serial.print(".");
 }
 Serial.println();
 Serial.print("Connected, IP address: ");
 Serial.println(WiFi.localIP());
}

void loop() {}

Example output:

Wi-Fi mode set to WIFI_STA
Begin WPS (press WPS button on your router) ... Success
.........
Connected, IP address: 192.168.1.102

Smart Config

The Smart Config connection of an ESP module an access point is done by sniffing for special packets that contain SSID and password of desired AP. To do so the mobile device or computer should have functionality of broadcasting of encoded SSID and password.

The following three functions are provided to implement Smart Config.

Start smart configuration mode by sniffing for special packets that contain SSID and password of desired Access Point. Depending on result either true or `false is returned.

beginSmartConfig()

Query Smart Config status, to decide when stop configuration. Function returns either true or false ofboolean` type.

smartConfigDone()

Stop smart config, free the buffer taken by beginSmartConfig(). Depending on result function return either true or false of boolean type.

stopSmartConfig()

For additional details regarding Smart Config please refer to ESP8266 API User Guide [http://bbs.espressif.com/viewtopic.php?f=51&t=1023].

Station

Example of connecting to an access point has been shown in chapter Quick Start. In case connection is lost, ESP8266 will automatically reconnect to the last used access point, once it is again available.

Can we provide more robust connection to Wi-Fi than that?

Table of Contents

	Introduction

	Prepare Access Points

	Try it Out

	Can we Make it Simpler?

	Conclusion

Introduction

Following the example inQuick Start, we would like to go one step further and made ESP connect to next available access point if current connection is lost. This functionality is provided with ‘ESP8266WiFiMulti’ class and demonstrated in sketch below.

#include <ESP8266WiFi.h>
#include <ESP8266WiFiMulti.h>

ESP8266WiFiMulti wifiMulti;
boolean connectioWasAlive = true;

void setup()
{
 Serial.begin(115200);
 Serial.println();

 wifiMulti.addAP("primary-network-name", "pass-to-primary-network");
 wifiMulti.addAP("secondary-network-name", "pass-to-secondary-network");
 wifiMulti.addAP("tertiary-network-name", "pass-to-tertiary-network");
}

void monitorWiFi()
{
 if (wifiMulti.run() != WL_CONNECTED)
 {
 if (connectioWasAlive == true)
 {
 connectioWasAlive = false;
 Serial.print("Looking for WiFi ");
 }
 Serial.print(".");
 delay(500);
 }
 else if (connectioWasAlive == false)
 {
 connectioWasAlive = true;
 Serial.printf(" connected to %s\n", WiFi.SSID().c_str());
 }
}

void loop()
{
 monitorWiFi();
}

Prepare Access Points

To try this sketch in action you need two (or more) access points. In lines below replace primary-network-name and pass-to-primary-network with name and password to your primary network. Do the same for secondary network.

wifiMulti.addAP("primary-network-name", "pass-to-primary-network");
wifiMulti.addAP("secondary-network-name", "pass-to-secondary-network");

You may add more networks if you have more access points.

wifiMulti.addAP("tertiary-network-name", "pass-to-tertiary-network");
...

Try it Out

Now upload updated sketch to ESP module and open serial monitor. Module will first scan for available networks. Then it will select and connect to the network with stronger signal. In case connection is lost, module will connect to next one available.

This process may look something like:

Looking for WiFi connected to sensor-net-1
Looking for WiFi connected to sensor-net-2
Looking for WiFi connected to sensor-net-1

In above example ESP connected first to sensor-net-1. Then I have switched sensor-net-1 off. ESP discovered that connection is lost and started searching for another configured network. That happened to be sensor-net-2 so ESP connected to it. Then I have switched sensor-net-1 back on and shut down sensor-net-2. ESP reconnected automatically to sensor-net-1.

Function monitorWiFi() is in place to show when connection is lost by displaying Looking for WiFi. Dots are displayed during process of searching for another configured access point. Then a message like connected to sensor-net-2 is shown when connection is established.

Can we Make it Simpler?

Please note that you may simplify this sketch by removing function monitorWiFi() and putting inside loop() only wifiMulti.run(). ESP will still reconnect between configured access points if required. Now you won’t be able to see it on serial monitor unless you add Serial.setDebugOutput(true) as described in point Enable Wi-Fi Diagnostic.

Updated sketch for such scenario will look as follows:

#include <ESP8266WiFi.h>
#include <ESP8266WiFiMulti.h>

ESP8266WiFiMulti wifiMulti;

void setup()
{
 Serial.begin(115200);
 Serial.setDebugOutput(true);
 Serial.println();

 wifiMulti.addAP("primary-network-name", "pass-to-primary-network");
 wifiMulti.addAP("secondary-network-name", "pass-to-secondary-network");
 wifiMulti.addAP("tertiary-network-name", "pass-to-tertiary-network");
}

void loop()
{
 wifiMulti.run();
}

That’s it! This is really all the code you need to make ESP automatically reconnecting between available networks.

After uploading sketch and opening the serial monitor, the messages will look as below.

Initial connection to sensor-net-1 on power up:

f r0, scandone
f r0, scandone
state: 0 -> 2 (b0)
state: 2 -> 3 (0)
state: 3 -> 5 (10)

add 0
aid 1
cnt
chg_B1:-40

connected with sensor-net-1, channel 1
dhcp client start...
ip:192.168.1.10,mask:255.255.255.0,gw:192.168.1.9

Lost connection to sensor-net-1 and establishing connection to sensor-net-2:

bcn_timout,ap_probe_send_start
ap_probe_send over, rest wifi status to disassoc
state: 5 -> 0 (1)
rm 0
f r-40, scandone
f r-40, scandone
f r-40, scandone
state: 0 -> 2 (b0)
state: 2 -> 3 (0)
state: 3 -> 5 (10)
add 0

aid 1
cnt

connected with sensor-net-2, channel 11
dhcp client start...
ip:192.168.1.102,mask:255.255.255.0,gw:192.168.1.234

Lost connection to sensor-net-2 and establishing connection back to sensor-net-1:

bcn_timout,ap_probe_send_start
ap_probe_send over, rest wifi status to disassoc
state: 5 -> 0 (1)
rm 0
f r-40, scandone
f r-40, scandone
f r-40, scandone
state: 0 -> 2 (b0)
state: 2 -> 3 (0)
state: 3 -> 5 (10)
add 0
aid 1
cnt

connected with sensor-net-1, channel 6
dhcp client start...
ip:192.168.1.10,mask:255.255.255.0,gw:192.168.1.9

Conclusion

I believe the minimalist sketch with ESP8266WiFiMulti class is a cool example what ESP8266 can do for us behind the scenes with just couple lines of code.

As shown in above example, reconnecting between access points takes time and is not seamless. Therefore, in practical applications, you will likely need to monitor connection status to decide e.g. if you can send the data to external system or should wait until connection is back.

For detailed review of functions provided to manage station mode please refer to the Station Class documentation.

UDP Class

Methods documented for WiFiUDP Class [https://www.arduino.cc/en/Reference/WiFiUDPConstructor] in Arduino [https://github.com/arduino/Arduino]

	begin() [https://www.arduino.cc/en/Reference/WiFiUDPBegin]

	available() [https://www.arduino.cc/en/Reference/WiFiUDPAvailable]

	beginPacket() [https://www.arduino.cc/en/Reference/WiFiUDPBeginPacket]

	endPacket() [https://www.arduino.cc/en/Reference/WiFiUDPEndPacket]

	write() [https://www.arduino.cc/en/Reference/WiFiUDPWrite]

	parsePacket() [https://www.arduino.cc/en/Reference/WiFiUDPParsePacket]

	peek() [https://www.arduino.cc/en/Reference/WiFiUDPPeek]

	read() [https://www.arduino.cc/en/Reference/WiFiUDPRead]

	flush() [https://www.arduino.cc/en/Reference/WiFiUDPFlush]

	stop() [https://www.arduino.cc/en/Reference/WiFIUDPStop]

	remoteIP() [https://www.arduino.cc/en/Reference/WiFiUDPRemoteIP]

	remotePort() [https://www.arduino.cc/en/Reference/WiFiUDPRemotePort]

Methods and properties described further down are specific to ESP8266.
They are not covered in Arduino WiFi library [https://www.arduino.cc/en/Reference/WiFi] documentation. Before they are fully documented please refer to information below.

Multicast UDP

uint8_t beginMulticast (IPAddress interfaceAddr, IPAddress multicast, uint16_t port)
virtual int beginPacketMulticast (IPAddress multicastAddress, uint16_t port, IPAddress interfaceAddress, int ttl=1)
IPAddress destinationIP ()
uint16_t localPort ()

The WiFiUDP class supports sending and receiving multicast packets on STA interface. When sending a multicast packet, replace udp.beginPacket(addr, port) with udp.beginPacketMulticast(addr, port, WiFi.localIP()). When listening to multicast packets, replace udp.begin(port) with udp.beginMulticast(WiFi.localIP(), multicast_ip_addr, port). You can use udp.destinationIP() to tell whether the packet received was sent to the multicast or unicast address.

For code samples please refer to separate section with examples dedicated specifically to the UDP Class.

UDP

The purpose of example application below is to demonstrate UDP communication between ESP8266 and an external client. The application (performing the role of a server) is checking inside the loop() for an UDP packet to arrive. When a valid packet is received, an acknowledge packet is sent back to the client to the same port it has been sent out.

Table of Contents

	Declarations

	Wi-Fi Connection

	UDP Setup

	An UDP Packet Arrived!

	An Acknowledge Send Out

	Complete Sketch

	How to Check It?

	Conclusion

Declarations

At the beginning of sketch we need to include two libraries:

#include <ESP8266WiFi.h>
#include <WiFiUdp.h>

The first library ESP8266WiFi.h is required by default if we are using ESP8266’s Wi-Fi. The second one WiFiUdp.h is needed specifically for programming of UDP routines.

Once we have libraries in place we need to create a WiFiUDP object. Then we should specify a port to listen to incoming packets. There are conventions on usage of port numbers, for information please refer to the List of TCP and UDP port numbers [https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers]. Finally we need to set up a buffer for incoming packets and define a reply message.

WiFiUDP Udp;
unsigned int localUdpPort = 4210;
char incomingPacket[255];
char replyPacekt[] = "Hi there! Got the message :-)";

Wi-Fi Connection

At the beginning of setup() let’s implement typical code to connect to an access point. This has been discussed in Quick Start. Please refer to it if required.

UDP Setup

Once connection is established, you can start listening to incoming packets.

Udp.begin(localUdpPort);

That is all required preparation. We can move to the loop() that will be handling actual UDP communication.

An UDP Packet Arrived!

Waiting for incoming UDP packed is done by the following code:

int packetSize = Udp.parsePacket();
if (packetSize)
{
 Serial.printf("Received %d bytes from %s, port %d\n", packetSize, Udp.remoteIP().toString().c_str(), Udp.remotePort());
 int len = Udp.read(incomingPacket, 255);
 if (len > 0)
 {
 incomingPacket[len] = 0;
 }
 Serial.printf("UDP packet contents: %s\n", incomingPacket);

 (...)
}

Once a packet is received, the code will printing out the IP address and port of the sender as well as the length of received packet. If the packet is not empty, its contents will be printed out as well.

An Acknowledge Send Out

For each received packet we are sending back an acknowledge packet:

Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());
Udp.write(replyPacekt);
Udp.endPacket();

Please note we are sending reply to the IP and port of the sender by using Udp.remoteIP() and Udp.remotePort().

Complete Sketch

The sketch performing all described functionality is presented below:

#include <ESP8266WiFi.h>
#include <WiFiUdp.h>

const char* ssid = "********";
const char* password = "********";

WiFiUDP Udp;
unsigned int localUdpPort = 4210; // local port to listen on
char incomingPacket[255]; // buffer for incoming packets
char replyPacekt[] = "Hi there! Got the message :-)"; // a reply string to send back

void setup()
{
 Serial.begin(115200);
 Serial.println();

 Serial.printf("Connecting to %s ", ssid);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED)
 {
 delay(500);
 Serial.print(".");
 }
 Serial.println(" connected");

 Udp.begin(localUdpPort);
 Serial.printf("Now listening at IP %s, UDP port %d\n", WiFi.localIP().toString().c_str(), localUdpPort);
}

void loop()
{
 int packetSize = Udp.parsePacket();
 if (packetSize)
 {
 // receive incoming UDP packets
 Serial.printf("Received %d bytes from %s, port %d\n", packetSize, Udp.remoteIP().toString().c_str(), Udp.remotePort());
 int len = Udp.read(incomingPacket, 255);
 if (len > 0)
 {
 incomingPacket[len] = 0;
 }
 Serial.printf("UDP packet contents: %s\n", incomingPacket);

 // send back a reply, to the IP address and port we got the packet from
 Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());
 Udp.write(replyPacekt);
 Udp.endPacket();
 }
}

How to Check It?

Upload sketch to module and open serial monitor. You should see confirmation that ESP has connected to Wi-Fi and started listening to UDP packets:

Connecting to twc-net-3 connected
Now listening at IP 192.168.1.104, UDP port 4210

Now we need another application to send some packets to IP and port shown by ESP above.

Instead of programming another ESP, let’s make it easier and use a purpose build application. I have selected the Packet Sender [https://packetsender.com/download]. It is available for popular operating systems. Download, install and execute it.

Once Packet Sender’s window show up enter the following information: * Name of the packet * ASCII text of the message to be send inside the packet * IP Address shown by our ESP * Port shown by the ESP
* Select UDP

What I have entered is shown below:

[image: Testing UDP with packet sender]
alt text

Now click Send.

Immediately after that you should see the following on ESP’s serial monitor:

Received 12 bytes from 192.168.1.106, port 55056
UDP packet contents: Hello World!

The text 192.168.1.106, port 55056 identifies a PC where the packet is send from. You will likely see different values.

As ESP sends an acknowledge packet back, you should see it in the log in the bottom part of the Packet Sender’s window.

Conclusion

This simple example shows how to send and receive UDP packets between ESP and an external application. Once tested in this minimal set up, you should be able to program ESP to talk to any other UDP device. In case of issues to establish communication with a new device, use the Packet Sender [https://packetsender.com] or other similar program for troubleshooting

For review of functions provided to send and receive UDP packets, please refer to the UDP Class documentation.

I am getting “espcomm_sync failed” error when trying to upload my ESP. How to resolve this issue?

	Introduction

	Initial Checks

	Advanced Checks

	Reset Methods

	Ck

	Nodemcu

	I’m Stuck

	Conclusion

Introduction

This message indicates issue with uploading ESP module over a serial
connection. There are couple of possible causes, that depend on the type
of module, if you use separate USB to serial converter, what parameters
are selected for upload, etc. As result there is no single answer on the
root cause. To find it out you may need to complete couple of
troubleshooting steps.

Note: If you are just starting with ESP, to reduce potential issues
with uploading, select ESP board with integrated USB to serial
converter. This will considerably reduce number of user depended
factors or configuration settings that influence upload process.

Example boards with USB to serial converter build in, that will make
your initial project development easier, are shown below.

[image: Example boards with integrated USB to serial converter]
Example boards with integrated USB to serial converter

If you are using a Generic ESP8266 module, separate USB to serial
converter and connect them by yourself, please make sure you have the
following three things right: 1. Module is provided with enough power,
2. GPIO0, GPIO15 and CH_PD are connected using pull up / pull down
resistors, 3. Module is put into boot loader mode.

For specific details please refer to section on Generic ESP8266
modules. Example modules
without USB to serial converter on board are shown below.

[image: Example ESP8266 modules without USB to serial converter]
Example ESP8266 modules without USB to serial converter

Initial Checks

In order to troubleshoot “espcomm_sync failed” error, please proceed
step by step through the checklist below. This list is organized
starting with most common and simple to more complex issues.

	Start with reading exact message displayed in debug window of Arduino
IDE. In many cases it provides direct information where the issue is.

[image: "espcomm_open failed" error]
“espcomm_open failed” error

For instance message above suggests that Arduino IDE is unable to open a
serial port COM3. Check if you have selected port where your module is
connected to.

[image: Serial port selection]
Serial port selection

	If a module is connected to the serial port but not responding as a
valid ESP8266 device, the message will read slightly different (see
below). If you have other modules connected to your PC, make sure
that you are uploading code to ESP8266 and not to e.g. Arduino UNO.

[image: Serial port selection]
Serial port selection

	To have your PC talking to ESP, select exact ESP type in upload menu.
If selection is incorrect then the upload may fail.

[image: Board selection]
Board selection

Basing on selected board type, Arduino IDE will apply specific “reset
method” to enter the board into boot loading mode. Reset methods are
board specific. Some boards do not have the h/w in place to support
reset by Arduino IDE. If this is the case, you need to enter such board
into boot loading mode manually.

	Upload may be also failing due to too high speed. If you have long or
poor quality USB cable, try reducing selection under Upload Speed.

[image: Serial speed selection]
Serial speed selection

Advanced Checks

	If you are still facing issues, test if module is indeed entering the
boot loading mode. You can do it by connecting secondary USB to
serial converter and checking the message displayed. Attach RX and
GND pins of converter to TX and GND pin of ESP as shown on example
below (get fzz
source).

[image: Secondary USB to serial converter hookup]
Secondary USB to serial converter hookup

Then open a terminal at 74880 baud, and look what message is reported
when ESP is being reset for programming. Correct message looks as
follows:

ets Jan 8 2013,rst cause:2, boot mode:(1,7)

If you see similar message but different values then decode them using
Boot Messages and Modes. The
key information is contained in first digit / three right-most bits of
the boot mode message as shown below.

[image: Decoding of boot mode]
Decoding of boot mode

For instance message boot mode (3,3) indicates that pins GPIO2 and
GPIO0 are set HIGH and GPIO15 is set LOW. This is configuration for
normal
operation of
module (to execute application from flash), not for boot
loading
(flash programming).

Note: Without having this step right you will not be able to upload
your module over a serial port.

	You have confirmed that module is in boot loading mode but upload
still fails. If you are using external USB to serial converter, then
check if it operates correctly by looping it back. This is quite
simple check. Just connect TX and RX of your converter together like
on picture below. Then open Serial Monitor and type some characters.
If everything is fine, then you should see what you type immediately
printed back on the monitor. For an ESP with USB to serial converter
on board, this check may involve breaking some PCB traces. I would
not do it unless being desperate. Instead try steps below.

[image: USB to serial converter loop back]
USB to serial converter loop back

	Next step to try, if not done already, is checking detailed debug
messages. Go to File > Preferences, enable Show verbose output
during: upload and try uploading again. For successful upload this
log should look similar to example shown below:

C:\Users\Krzysztof\AppData\Local\Arduino15\packages\esp8266\tools\esptool\0.4.8/esptool.exe -vv -cd ck -cb 115200 -cp COM3 -ca 0x00000 -cf C:\Users\KRZYSZ~1\AppData\Local\Temp\build7e44b372385012e74d64fb272d24b802.tmp/Blink.ino.bin esptool v0.4.8 - (c) 2014 Ch. Klippel <ck@atelier-klippel.de> setting board to ck setting baudrate from 115200 to 115200 setting port from COM1 to COM3 setting address from 0x00000000 to 0x00000000 espcomm_upload_file espcomm_upload_mem setting serial port timeouts to 1000 ms opening bootloader resetting board trying to connect flush start setting serial port timeouts to 1 ms setting serial port timeouts to 1000 ms flush complete espcomm_send_command: sending command header espcomm_send_command: sending command payload read 0, requested 1 trying to connect flush start setting serial port timeouts to 1 ms setting serial port timeouts to 1000 ms flush complete espcomm_send_command: sending command header espcomm_send_command: sending command payload espcomm_send_command: receiving 2 bytes of data espcomm_send_command: receiving 2 bytes of data espcomm_send_command: receiving 2 bytes of data espcomm_send_command: receiving 2 bytes of data espcomm_send_command: receiving 2 bytes of data espcomm_send_command: receiving 2 bytes of data espcomm_send_command: receiving 2 bytes of data espcomm_send_command: receiving 2 bytes of data Uploading 226368 bytes from to flash at 0x00000000 erasing flash size: 037440 address: 000000 first_sector_index: 0 total_sector_count: 56 head_sector_count: 16 adjusted_sector_count: 40 erase_size: 028000 espcomm_send_command: sending command header espcomm_send_command: sending command payload setting serial port timeouts to 15000 ms setting serial port timeouts to 1000 ms espcomm_send_command: receiving 2 bytes of data writing flash .. starting app without reboot espcomm_send_command: sending command header espcomm_send_command: sending command payload espcomm_send_command: receiving 2 bytes of data closing bootloader flush start setting serial port timeouts to 1 ms setting serial port timeouts to 1000 ms flush complete

Upload log may be longer depending on number of connection attempts made
by esptool. Analyze it for any anomalies to configuration you have
selected in Arduino IDE, like different serial port, reset method, baud
rate, etc. Resolve all noted differences.

Reset Methods

If you got to this point and still see espcomm_sync failed, then now
you need to bring in the heavy guns.

Connect scope or logic analyzer to GPIO0, RST and RXD pins of the ESP to
check what’s happening.

Then compare your measurements with wave-forms collected for circuits
below. They document two standard methods of resetting ESP8266 for
upload, that you can select in Arduino IDE - ck and
nodemcu.

Ck

Circuit below has been prepared to collect wave-forms for ck reset
method (get fzz source). It is
simpler than for nodemcu reset and therefore often used
to wire up generic ESP modules on a breadboard. Check it against your
wiring when comparing your measurements against wave-forms below.

[image: Sample circuit to check ck method]
Sample circuit to check ck method

The following wave-forms below show voltage signals on GPIO0 and RST
pins of the ESP board when uploading the firmware.

Close up of ck reset method signal sequence at the beginning of upload
is shown below.

[image: Reset Method: ck, close up at the beginning of upload]
Reset Method: ck, close up at the beginning of upload

Next picture shows complete upload of
Blink.ino [https://github.com/esp8266/Arduino/blob/master/libraries/esp8266/examples/Blink/Blink.ino]
example at 921600 baud. This is quite high speed, so the upload takes
only about 8s.

[image: Reset Method: ck, complete upload]
Reset Method: ck, complete upload

Please note that when esptool is not able to initialize upload at the
first time, then it retries reset procedure. Case of one such retry is
shown on wave-form below.

[image: Reset Method: ck, complete upload]
Reset Method: ck, complete upload

Each retry is reported in upload log as follows:

resetting board
trying to connect
 flush start
 setting serial port timeouts to 1 ms
 setting serial port timeouts to 1000 ms
 flush complete
 espcomm_send_command: sending command header
 espcomm_send_command: sending command payload
 read 0, requested 1

Presented circuit has one important limitation when it comes to work
with Arduino IDE. After opening Serial Monitor (Ctrl-Shift-M), both RTS
and DTR lines are permanently pulled down. As RTS line is connected to
REST input of ESP, the module is hold in reset state / not able to run.
Therefore after uploading module, you need to disconnect both lines or
use different serial terminal program that is not pulling down RTS and
DTR lines. Otherwise the module will get stuck waiting for releasing the
REST signal and you will see nothing on the Serial Monitor.

As for different serial terminal program you can check Arduino IDE
add-on Serial Monitor for
ESP8266 developed
by user [@mytrain](https://github.com/mytrain) and discussed in
#1360 [https://github.com/esp8266/Arduino/issues/1360].

If you prefer external terminal program, then for Windows users we can
recommend free and handy
Termite [http://www.compuphase.com/software_termite.htm].

Nodemcu

Nodemcu reset method is named after
NodeMCU [https://github.com/nodemcu/nodemcu-devkit] board where it
has been introduced for the first time. It overcomes limitations with
handling of RTS and DTR lines discussed for ck reset method
above.

Sample circuit to measure wave-form is shown below (get fzz
source).

[image: Sample circuit to check nodemcu reset method]
Sample circuit to check nodemcu reset method

Close up of voltage signals on GPIO0 and RST pins at the beginning of
firmware upload is shown below.

[image: Reset Method: nodemcu, close up at the beginning of upload]
Reset Method: nodemcu, close up at the beginning of upload

Please note that the reset sequence is about 10x shorter comparing to
ck reset (about 25ms vs. 250ms).

Next picture covers complete upload of
Blink.ino [https://github.com/esp8266/Arduino/blob/master/libraries/esp8266/examples/Blink/Blink.ino]
example at 921600 baud. Except for difference of the reset signal
sequence, the complete upload looks similar to that of ck.

[image: Reset Method: nodemcu, complete upload]
Reset Method: nodemcu, complete upload

A sample wave-form below shows another upload of
Blink.ino [https://github.com/esp8266/Arduino/blob/master/libraries/esp8266/examples/Blink/Blink.ino]
example at 921600 baud, but with two reset retries.

[image: Reset Method: nodemcu, reset retries]
Reset Method: nodemcu, reset retries

If you are interested how noodemcu reset method is implemented, then
check circuit below. As indicated it does not pull to ground RTS and DTR
lines once you open Serial Monitor in Arduino IDE.

[image: Implementation of noodemcu reset]
Implementation of noodemcu reset

It consists of two transistors and resistors that you can locate on
NodeMCU board on right. On left you can see complete circuit and the
truth table how RTS and DTR signals of the serial interface are
translated to RST and GPIO0 on the ESP. For more details please refer to
nodemcu [https://github.com/nodemcu/nodemcu-devkit] repository on
GitHub.

I’m Stuck

Hopefully at this point you were able to resolve espcomm_sync failed
issue and now enjoy quick and reliable uploads of your ESP modules.

If this is still not the case, then review once more all discussed steps
in the checklist below.

Initial Checks * [] Is your module connected to serial port and
visible in IDE? * [] Is connected device responding to IDE? What is
exact message in debug window? * [] Have you selected correct ESP
module type in Board menu? What is the selection? * [] Have you
tried to reduce upload speed? What speeds have you tried?

Advanced Checks * [] What message is reported by ESP at 74880 baud
when entering boot loading mode? * [] Have you checked your USB to
serial converter by looping it back? What is the result? * [] Is your
detailed upload log consistent with settings in IDE? What is the log?

Reset Method * [] What reset method do you use? * [] What is
your connection diagram? Does it match diagram in this FAQ? * [] What
is your wave-form of board reset? Does it match wave-form in this FAQ?
* [] What is your wave-form of complete upload? Does it match
wave-form in this FAQ?

Software * [] Do you use the latest stable version of esp8266 /
Arduino [https://github.com/esp8266/Arduino]? What is it? * [] What
is the name and version of your IDE and O/S?

If you are stuck at certain step, then post this list on ESP8266
Community Forum [http://www.esp8266.com/] asking for support.

Conclusion

With variety of available ESP8266 modules and boards, as well as
possible connection methods, troubleshooting of upload issues may take
several steps.

If you are a beginner, then use boards with integrated power supply and
USB to serial converter. Check carefully message in debug window and act
accordingly. Select your exact module type in IDE and try to adjust
upload speed. Check if board is indeed entering boot loading mode. Check
operation of your USB to serial converter with loop back. Analyze
detailed upload log for inconsistencies with IDE settings.

Verify your connection diagram and wave-form for consistency with
selected reset method.

If you get stuck, then ask community [http://www.esp8266.com/] for
support providing summary of all completed checks.

[image: Test stand used during checking of ck reset method]
Test stand used during checking of ck reset method

Test stand used for checking of ck reset method is shown above.

No any ESP module has been harmed during preparation of this FAQ item.

FAQ list :back:

My ESP crashes running some code. How to troubleshoot it?

	Introduction

	What ESP has to Say

	Get Your H/W Right

	What is the Cause of Restart?

	Exception

	Watchdog

	Check Where the Code Crashes

	Other Causes for Crashes

	If at the Wall, Enter an Issue
Report

	Conclusion

Introduction

Your ESP is self restarting. You don’t know why and what to do about it.

Do not panic.

In most of cases ESP provides enough clues on serial monitor, that you
can interpret to pin down the root cause. The first step is then
checking what ESP is saying on serial monitor when it crashes.

What ESP has to Say

Start off by opening a Serial Monitor (Ctrl+Shift+M) to observe the
output. Typical crash log looks as follows:

[image: Typical crash log]
Typical crash log

Before rushing to copy and paste displayed code to Google, reflect for a
while on the nature of observed restarts:

	Does ESP restart on random basis, or under certain conditions, like
serving a web page?

	Do you see always the same exception code and stack trace or it
changes?

	Does this issue occur with unmodified standard example code (Arduino
IDE > File > Examples)?

If restarts are random or the exception code differs between restarts,
then the problem may be caused by h/w. If the issue occurs for standard
examples and stable esp8266 /
arduino [https://github.com/esp8266/Arduino] core, them the issue is
almost certainly caused by h/w.

Get Your H/W Right

If you suspect the h/w, before troubleshooting the s/w, make sure to get
your h/w right. There is no much sense in diagnosing the s/w if you
board is randomly crashing because of not enough power, missing boot
strapping resistors or loose connections.

If you are using generic ESP modules, please follow
recommendations on power supply and
boot strapping resistors.

For boards with integrated USB to serial converter and power supply,
usually it is enough to connect it to an USB hub that provides standard
0.5A and is not shared with other USB devices.

In any case make sure that your module is able to stable run standard
example sketches that establish Wi-Fi connection like e.g.
HelloServer.ino [https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WebServer/examples/HelloServer].

What is the Cause of Restart?

You have verified that the ESP h/w is healthy but it still restarts.
This is how ESP reacts to abnormal behavior of application. If something
is wrong, it restarts itself to tell you about it.

There are two typical scenarios that trigger ESP restarts:

	Exception - when code is performing illegal
operation [https://github.com/esp8266/Arduino/blob/master/doc/exception_causes.md],
like trying to write to non-existent memory location.

	Watchdog - if code is locked
up [https://en.wikipedia.org/wiki/Watchdog_timer] staying too long
in a loop or processing some task, so vital processes like Wi-Fi
communication are not able to run.

Please check below how to recognize exception and
watchdog scenarios and what to do about it.

Exception

Typical restart because of exception looks like follows:

[image: Exception cause decoding]
Exception cause decoding

Start with looking up exception code in the Exception Causes
(EXCCAUSE) [https://github.com/esp8266/Arduino/blob/master/doc/exception_causes.md]
table to understand what kind of issue it is. If you have no clues what
it’s about and where it happens, then use Arduino ESP8266/ESP32
Exception Stack Trace
Decoder [https://github.com/me-no-dev/EspExceptionDecoder] to find
out in which line of application it is triggered. Please refer to Check
Where the Code Crashes point below
for a quick example how to do it.

Watchdog

ESP provides two watchdog timers (wdt) that observe application for lock
up.

	Software Watchdog - provided by
SDK [http://bbs.espressif.com/viewforum.php?f=46], that is part
of esp8266 / arduino [https://github.com/esp8266/Arduino] core
loaded to module together with your application.

	Hardware Watchdog - build in ESP8266 hardware and acting if
software watchdog is disabled for too long, in case it fails, or if
it is not provided at all.

Restart by particular type of watchdog is clearly identified by ESP on
serial monitor.

An example of application crash triggered by software wdt is shown
below.

[image: Example of restart by s/w watchdog]
Example of restart by s/w watchdog

Restart by the software watchdog is generally easier to troubleshoot
since log includes the stack trace. The trace can be then used to find
particular line in code where wdt has been triggered.

Reset by hardware watchdog timer is shown on picture below.

[image: Example of restart by h/w watchdog]
Example of restart by h/w watchdog

Hardware wdt is the last resort of ESP to tell you that application is
locked up (if s/w wdt timer is disabled or not working).

Please note that for restarts initialized by h/w wdt, there is no stack
trace to help you identify the place in code where the lockup has
happened. In such case, to identify the place of lock up, you need to
rely on debug messages like Serial.print distributed across the
application. Then by observing what was the last debug message printed
out before restart, you should be able to narrow down part of code
firing the h/w wdt reset. If diagnosed application or library has debug
option then switch it on to aid this troubleshooting.

Check Where the Code Crashes

Decoding of ESP stack trace is now easy and available to everybody
thanks to great Arduino ESP8266/ESP32 Exception Stack Trace
Decoder [https://github.com/me-no-dev/EspExceptionDecoder] developed
by @me-no-dev.

Installation for Arduino IDE is quick and easy following the
installation [https://github.com/me-no-dev/EspExceptionDecoder#installation]
instructions.

If you don’t have any code for troubleshooting, use the example below:

void setup()
{
 Serial.begin(115200);
 Serial.println();
 Serial.println("Let's provoke the s/w wdt firing...");
 //
 // wait for s/w wdt in infinite loop below
 //
 while(true);
 //
 Serial.println("This line will not ever print out");
}

void loop(){}

Upload this code to your ESP (Ctrl+U) and start Serial Monitor
(Ctrl+Shift+M). You should shortly see ESP restarting every couple of
seconds and Soft WDT reset message together with stack trace showing
up on each restart. Click the Autoscroll check-box on Serial Monitor to
stop the messages scrolling up. Select and copy the stack trace, go to
the Tools and open the ESP Exception Decoder.

[image: Decode the stack trace, steps 1 and 2]
Decode the stack trace, steps 1 and 2

Now paste the stack trace to Exception Decoder’s window. At the bottom
of this window you should see a list of decoded lines of sketch you have
just uploaded to your ESP. On the top of the list, like on the top of
the stack trace, there is a reference to the last line executed just
before the software watchdog timer fired causing the ESP’s restart.
Check the number of this line and look it up on the sketch. It should be
the line Serial.println("Let's provoke the s/w wdt firing..."), that
happens to be just before while(true) that made the watchdog fired
(ignore the lines with comments, that are discarded by compiler).

[image: Decode the stack trace, steps 3 through 6]
Decode the stack trace, steps 3 through 6

Armed with Arduino ESP8266/ESP32 Exception Stack Trace
Decoder [https://github.com/me-no-dev/EspExceptionDecoder] you can
track down where the module is crashing whenever you see the stack trace
dropped. The same procedure applies to crashes caused by exceptions.

Note: To decode the exact line of code where the application
crashed, you need to use ESP Exception Decoder in context of sketch
you have just loaded to the module for diagnosis. Decoder is not
able to correctly decode the stack trace dropped by some other
application not compiled and loaded from your Arduino IDE.

Other Causes for Crashes

	Interrupt Service Routines

	By default, all functions are compiled into flash, which means that the
cache may kick in for that code. However, the cache currently can’t be used
during hardware interrupts. That means that, if you use a hardware ISR, such as
attachInterrupt(gpio, myISR, CHANGE) for a GPIO change, the ISR must have the
ICACHE_RAM_ATTR attribute declared. Not only that, but the entire function tree
called from the ISR must also have the ICACHE_RAM_ATTR declared.
Be aware that every function that has this attribute reduces available memory.

In addition, it is not possible to execute delay() or yield() from an ISR,
or do blocking operations, or operations that disable the interrupts, e.g.: read
a DHT.

Finally, an ISR has very high restrictions on timing for the executed code, meaning
that executed code should not take longer than a very few microseconds. It is
considered best practice to set a flag within the ISR, and then from within the loop()
check and clear that flag, and execute code.

	Asynchronous Callbacks

	Asynchronous CBs, such as for the Ticker or ESPAsync* libs, have looser restrictions
than ISRs, but some restrictions still apply.
It is not possible to execute delay() or yield() from an asynchronous callback.
Timing is not as tight as an ISR, but it should remain below a few milliseconds. This
is a guideline. The hard timing requirements depend on the WiFi configuration and
amount of traffic. In general, the CPU must not be hogged by the user code, as the
longer it is away from servicing the WiFi stack, the more likely that memory corruption
can happen.

	Memory, memory, memory

	Running out of heap is the most common cause for crashes. Because the build process for
the ESP leaves out exceptions (they use memory), memory allocations that fail will do
so silently. A typical example is when setting or concatenating a large String. If
allocation has failed internally, then the internal string copy can corrupt data, and
the ESP will crash.

In addition, doing many String concatenations in sequence, e.g.: using operator+()
multiple times, will cause memory fragmentation. When that happens, allocations may
silently fail even though there is enough total heap available. The reason for the
failure is that an allocation requires finding a single free memory block that is large
enough for the size being requested. A sequence of String concatenations causes many
allocations/deallocations/reallocations, which makes “holes” in the memory map. After
many such operations, it can happen that all available holes are too small to comply
with the requested size, even though the sum of all holes is greater than the requested
size.

So why do these silent failures exist? On the one hand, there are specific interfaces that
must be adhered to. For example, the String object methods don’t allow for error handling
at the user application level (i.e.: no old-school error returns).
On the other hand, some libraries don’t have the allocation code accessible for
modification. For example, std::vector is available for use. The standard implementations
rely on exceptions for error handling, which is not available for the ESP, and in any
case there is no access to the underlying code.

Some techniques for reducing memory usage

	Don’t use const char * with literals. Instead, use const char[] PROGMEM. This is particularly true if you intend to, e.g.: embed html strings.

	Don’t use global static arrays, such as uint8_t buffer[1024]. Instead, allocate dynamically. This forces you to think about the size of the array, and its scope (lifetime), so that it gets released when it’s no longer needed. If you are not certain about dynamic allocation, use std libs (e.g.: std:vector, std::string), or smart pointers. They are slightly less memory efficient than dynamically allocating yourself, but the provided memory safety is well worth it.

	If you use std libs like std::vector, make sure to call its ::reserve() method before filling it. This allows allocating only once, which reduces mem fragmentation, and makes sure that there are no empty unused slots left over in the container at the end.

	Stack

	The amount of stack in the ESP is tiny at only 4KB. For normal developement in large systems, it
is good practice to use and abuse the stack, because it is faster for allocation/deallocation, the scope of the object is well defined, and deallocation automatically happens in reverse order as allocation, which means no mem fragmentation. However, with the tiny amount of stack available in the ESP, that practice is not really viable, at least not for big objects.

	Large objects that have internally managed memory, such as String, std::string, std::vector, etc, are ok on the stack, because they internally allocate their buffers on the heap.

	Large arrays on the stack, such as uint8_t buffer[2048] should be avoided on the stack and be dynamically allocated (consider smart pointers).

	Objects that have large data members, such as large arrays, should be avoided on the stack, and be dynamicaly allocated (consider smart pointers).

If at the Wall, Enter an Issue Report

Using the procedure above you should be able to troubleshoot all the
code you write. It may happen that ESP is crashing inside some library
or code you are not familiar enough to troubleshoot. If this is the case
then contact the application author by writing an issue report.

Follow the guidelines on issue reporting that may be provided by the
author of code in his / her repository.

If there are no guidelines, include in your report the following:

	[] Exact steps by step instructions to reproduce the issue

	[] Your exact hardware configuration including the schematic

	[] If the issue concerns standard, commercially available ESP board
with power supply and USB interface, without extra h/w attached, then
provide just the board type or link to description

	[] Configuration settings in Arduino IDE used to upload the
application

	[] Error log & messages produced by the application (enable
debugging for more details)

	[] Decoded stack trace

	[] Copy of your sketch

	[] Copy of all the libraries used by the sketch

	[] If you are using standard libraries available in Library Manager,
then provide just version numbers

	[] Version of esp8266 /
Arduino [https://github.com/esp8266/Arduino] core

	[] Name and version of your programming IDE and O/S

With plenty of ESP module types available, several versions of libraries
or esp8266 / Arduino [https://github.com/esp8266/Arduino] core,
types and versions of O/S, you need to provide exact information what
your application is about. Only then people willing to look into your
issue may be able to refer it to configuration they have. If you are
lucky, they may even attempt to reproduce your issue on their equipment.
This will be far more difficult if you are providing only vague details,
so somebody would need to ask you to find out what is really happening.

On the other hand if you flood your issue report with hundreds lines of
code, you may also have difficulty to find somebody willing to analyze
it. Therefore reduce your code to the bare minimum that is still causing
the issue. It will help you as well to isolate the issue and pin done
the root cause.

Conclusion

Do not be afraid to troubleshoot ESP exception and watchdog restarts.
Esp8266 / Arduino [https://github.com/esp8266/Arduino] core provides
detailed diagnostics that will help you pin down the issue. Before
checking the s/w, get your h/w right. Use ESP Exception
Decoder [https://github.com/me-no-dev/EspExceptionDecoder] to find
out where the code fails. If you do you homework and still unable to
identify the root cause, enter the issue report. Provide enough details.
Be specific and isolate the issue. Then ask community for support. There
are plenty of people that like to work with ESP and willing to help with
your problem.

FAQ list :back:

This Arduino library doesn’t work on ESP. How do I make it working?

	Introduction

	Identify the Issues

	Fix it Yourself

	Compilation Errors

	Exceptions / Watchdog Resets

	Functionality Issues

	Conclusion

Introduction

You would like to use this Arduino library with ESP8266 and it doesn’t
perform. It is not listed among libraries verified to work with
ESP8266.
You couldn’t find any evidence on internet that it is compatible.

What are the odds to make it working?

Identify the Issues

Start with looking for all the symptoms that it is not compatible with
ESP8266. Ideally use example sketches provided with the library. Then
list all the issues you are able to identify.

You are likely to see one or more of the following: * Compilation drops
errors * There are no issues with compilation but application restarts
because of exception or watchdog (wdt) * Application seems to work, but
does not function as expected, e.g. calculation results are incorrect.

Armed with the list of issues, contact the library author asking for
comments. If issues are legitimate, then ask for his / her support to
implement it for ESP8266. Being specific you have bigger chances
convincing the author to help you either by updating the library or
guiding you how to resolve the issues.

Fix it Yourself

If library author is unable to provide support, then assess the chances
of fixing it yourself.

Compilation Errors

Issue: Compiler complains about usage of AVR registers (PORTx, PINx,
TCR1A, etc).

Solution: Check if usage of registers is well localized in a few
functions, try to replace GPIO registers usage with digitalRead /
digitalWrite, timer registers usage with timerX_ functions. If usage of
AVR registers happens all over the code, this library might not be worth
the effort. Also may be worth checking if someone got the library
working on ARM (Due/STM), PIC, etc. If this is the case, maybe there
already is a version of the library which uses Arduino APIs instead of
raw registers.

Issue: Compiler complains about <avr/pgmspace.h>.

Solution: modify the library by adding conditional include of ESP’s
pgmspace.h.

#ifdef ESP8266
 #include <pgmspace.h>
#else
 #include <avr/pgmspace.h>
#endif

Exceptions / Watchdog Resets

To troubleshoot resets follow FAQ item My ESP crashes running some
code.

Functionality Issues

Issue: Application works but returns weird numerical values.

Solution:: Check the usage of int type in the library. On AVRs
integers are 16 bit, and on ESPs they are 32 bit (just like on ARM).

Issue: Some device with time critical control like a servo drive or a
strip pf LEDs does not operate smoothly and tends to randomly change
position or displayed pattern.

Solution:: Check for usage of interrupts that may get in conflict with
Wi-Fi activity of ESP8266. You may temporarily disable Wi-Fi
communication WiFi.mode(WIFI_OFF); to check if it helps.

Conclusion

Identify compatibility issues and ask library author for support. If
left on your own, then check for usage of controller’s low level access
functionality. Use Esp Exception
Decoder [https://github.com/me-no-dev/EspExceptionDecoder] if
confronted with exceptions / watchdogs resets.

The good news is that the number of libraries which aren’t supported on
the ESP8266 is shrinking. Community of ESP8266 enthusiasts is growing.
If you are unable to resolve the issues yourself, there are very good
odds that you will be able to find somebody else to help you.

FAQ list :back:

How to resolve “Board generic (platform esp8266, package esp8266) is unknown” error?

This error may pop up after switching between
staging [https://github.com/esp8266/Arduino#staging-version-] and
stable [https://github.com/esp8266/Arduino#stable-version-] esp8266
/ Arduino package installations, or after upgrading the package version.

[image: Board nodemcu2 (platform esp8266, package esp8266) is unknown error]
alt text

If you face this issue, you will not be able to compile any sketch for
any ESP8266 module type.

Read below what is the error root cause or jump straight to the
resolution

The Root Cause

This issue is attributed to Arduino IDE Boards Manager not cleaning up
previous package installation before a new one is applied. As this is
not done, then it is user responsibility to remove previous package
before applying a new one.

To prevent it from happening, if you are changing between staging
and stable, first press Remove button to delete currently used
installation.

[image: If changing between staging and stable, remove currently installed package]
alt text

There is no need to remove the installed package if you are changing it
to another version (without switching between staging and stable).

[image: No need to remove installed package if changing its version]
alt text

Depending on selected module the error message is slightly different.
For instance, if you choose Generic ESP8266 Module, it will look as
follows:

Board generic (platform esp8266, package esp8266) is unknown
Error compiling for board Generic ESP8266 Module.

Below is an example messages for
WeMos [https://github.com/esp8266/Arduino/blob/master/doc/boards.md#wemos-d1]:

Board d1_mini (platform esp8266, package esp8266) is unknown
Error compiling for board WeMos D1 R2 & mini.

… and another one for Adafruit
HUZZAH [https://github.com/esp8266/Arduino/blob/master/doc/boards.md#adafruit-huzzah-esp8266-esp-12]:

Board huzzah (platform esp8266, package esp8266) is unknown
Error compiling for board Adafruit HUZZAH ESP8266.

If the issue already happens, then uninstalling and re-installing the
package with Boards Manager typically will not fix it.

Uninstalling and re-installing the Arduino IDE will not fix it as well.

Well, OK, fine. You will be able to fix it with Boards Manager. To do
so, you need to carefully go step by step through the effort of removing
new and then the old package. Once done you can install again the new
package. Did I mention that in between you need to change twice
JOSN [https://github.com/esp8266/Arduino#installing-with-boards-manager]
in Additional Boards Manager URLs?

Fortunately there is a quicker and more effective fix. See below.

How to Fix it?

Issue resolution is as simple as deleting a folder with older esp8266 /
Arduino installation.

Procedure is identical on Windows, Linux and Mac OS. The only difference
is folder path. For instance, on Mac, it will be
/Users/$USER/Library/Arduino15/packages/esp8266/hardware/esp8266.
Example below shows the path for Windows.

	Check location of installation folder by going to File >
Preferences (Ctrl+,). The folder location is at the very bottom of
the Preferences window.

[image: Checking of Arduino IDE Preferences]
alt text

	Click provided link to open the folder. For Windows 7 it will look as
follows:

[image: Contents of Arduino IDE preferences folder]
alt text

	Navigate further down to
Arduino15\packages\esp8266\hardware\esp8266 directory. Inside you
will find two folders with different esp8266 / Arduino package
installations.

[image: Checking of contents of esp8266 / Arduino package folder]
alt text

	Delete the older folder. Restart Arduino IDE, select your ESP module
and the error should be gone.

Note: If you are not sure which folder to delete, then remove both of
them. Restart Arduino IDE, go to Tools > Board: > Boards Manager and
install the esp8266 / Arduino package again. Select ESP8266 module and
the issue should be resolved.

More Information

This issue has been reported quite frequently in
Issues [https://github.com/esp8266/Arduino/issues] section of
esp8266 / Arduino repository. The most appreciated solution was provided
by [@anhhuy0501](https://github.com/anhhuy0501) in
#1387 [https://github.com/esp8266/Arduino/issues/1387#issuecomment-204865028].

If you are interested in more details, please refer to
#2297 [https://github.com/esp8266/Arduino/issues/2297],
#2156 [https://github.com/esp8266/Arduino/issues/2156],
#2022 [https://github.com/esp8266/Arduino/issues/2022],
#1802 [https://github.com/esp8266/Arduino/issues/1802],
#1514 [https://github.com/esp8266/Arduino/issues/1514],
#1387 [https://github.com/esp8266/Arduino/issues/1387],
#1377 [https://github.com/esp8266/Arduino/issues/1377],
#1251 [https://github.com/esp8266/Arduino/issues/1251],
#1247 [https://github.com/esp8266/Arduino/issues/1247],
#948 [https://github.com/esp8266/Arduino/issues/948]

 _images/ota-web-browser-form-ok.png
[Em——

€ = € |[) esps266-webupdatelocal

_images/ota-web-browser-form.png
e Tap——r——

€ = € [[) esps266-webupdate.local/updat:

Choose File | No fie chosen Update

_images/esp8266-station-soft-access-point.png
Internet

=) (

Station + Soft
Access Point
(ESP8266) Access Point

ESP8266 operating in the Station + Soft Access Point Mode mode

_images/esp8266-station.png
Internet

Station

(ESP8266) Access Point

Station (PC)

ESP8266 operating in the Station mode

_images/ota-web-path-to-binary.png
2 Weblupdater | Arduino 16:

WebUpdter

Skescn uses 225,766 byces (224) storage|

vazisbles use 37,560 a

path to “WebUpdater.cpp.bin” file

_images/ota-web-serial-monitor-ready.png

_images/esp8266-server.png
Internet

Client (PC)

Access Point

Server
(ESP8266)

Client
{mobile phone)

ESP8266 operating as the Server

_images/esp8266-soft-access-point.png
R =

Station (PC)

Station

(mobile phone) Soft Access Point

(ESP8266)

ESP8266 operating in the Soft Access Point mode

_images/esp8266-client-secure.png
- ﬁ .
& :

Server

Client Secure

(ESP8266) Server (PC)

»

Access Point

ESP8266 operating as the Client Secure

_images/esp8266-client.png
Internet .

Server

A

Access Point

7
Jf'

(ESP8266) Server (PC)

ESP8266 operating as the Client

nav.xhtml

 Table of Contents

 		
 Welcome to ESP8266 Arduino Core’s documentation!

 		
 Installing

 		
 Boards Manager

 		
 Prerequisites

 		
 Instructions

 		
 Using git version

 		
 Prerequisites

 		
 Instructions

 		
 Reference

 		
 Digital IO

 		
 Analog input

 		
 Analog output

 		
 Timing and delays

 		
 Serial

 		
 Progmem

 		
 Libraries

 		
 WiFi(ESP8266WiFi library)

 		
 Ticker

 		
 EEPROM

 		
 I2C (Wire library)

 		
 SPI

 		
 SoftwareSerial

 		
 ESP-specific APIs

 		
 mDNS and DNS-SD responder (ESP8266mDNS library)

 		
 SSDP responder (ESP8266SSDP)

 		
 DNS server (DNSServer library)

 		
 Servo

 		
 Other libraries (not included with the IDE)

 		
 File system

 		
 Flash layout

 		
 File system limitations

 		
 Uploading files to file system

 		
 File system object (SPIFFS)

 		
 begin

 		
 end

 		
 format

 		
 open

 		
 exists

 		
 openDir

 		
 remove

 		
 rename

 		
 info

 		
 Filesystem information structure

 		
 Directory object (Dir)

 		
 File object

 		
 seek

 		
 position

 		
 size

 		
 name

 		
 close

 		
 ESP8266WiFi

 		
 Introduction

 		
 Quick Start

 		
 Who is Who

 		
 Class Description

 		
 Station

 		
 Soft Access Point

 		
 Scan

 		
 Client

 		
 Client Secure

 		
 Server

 		
 UDP

 		
 Generic

 		
 Diagnostics

 		
 Check Return Codes

 		
 Use printDiag

 		
 Enable Wi-Fi Diagnostic

 		
 Enable Debugging in IDE

 		
 What’s Inside?

 		
 OTA Updates

 		
 Introduction

 		
 Security

 		
 Safety

 		
 Basic Requirements

 		
 Arduino IDE

 		
 Requirements

 		
 Application Example

 		
 Web Browser

 		
 Requirements

 		
 Implementation Overview

 		
 Application Example

 		
 HTTP Server

 		
 Requirements

 		
 Arduino code

 		
 Server request handling

 		
 Stream Interface

 		
 Updater class

 		
 Update process - memory view

 		
 PROGMEM

 		
 Intro

 		
 Declare a flash string within code block.

 		
 Functions to read back from PROGMEM

 		
 How do I declare a global flash string and use it?

 		
 How do I use inline flash strings?

 		
 How do I declare and use data in PROGMEM?

 		
 How do I declare some data in PROGMEM, and retrieve one byte from it.

 		
 In summary

 		
 Boards

 		
 Adafruit HUZZAH ESP8266 (ESP-12)

 		
 ESPresso Lite 1.0

 		
 ESPresso Lite 2.0

 		
 Phoenix 1.0

 		
 Phoenix 2.0

 		
 NodeMCU 0.9

 		
 Pin mapping

 		
 NodeMCU 1.0

 		
 Olimex MOD-WIFI-ESP8266-DEV

 		
 Olimex MOD-WIFI-ESP8266

 		
 Olimex ESP8266-EVB

 		
 SparkFun ESP8266 Thing

 		
 SweetPea ESP-210

 		
 ESPino

 		
 WifInfo

 		
 DigiStump Oak

 		
 Generic ESP8266 modules

 		
 Serial Adapter

 		
 Minimal Hardware Setup for Bootloading and Usage

 		
 ESP to Serial

 		
 Minimal Hardware Setup for Bootloading only

 		
 Minimal Hardware Setup for Running only

 		
 Minimal

 		
 Improved Stability

 		
 Boot Messages and Modes

 		
 rst cause

 		
 boot mode

 		
 Generic ESP8285 modules

 		
 WeMos D1

 		
 WeMos D1 mini

 		
 ESPino (WROOM-02 Module) by ThaiEasyElec

 		
 gen4-IoD Range by 4D Systems

 		
 FAQ

 		
 I am getting “espcomm_sync failed” error when trying to upload my ESP. How to resolve this issue?

 		
 Why esptool is not listed in “Programmer” menu? How do I upload ESP without it?

 		
 My ESP crashes running some code. How to troubleshoot it?

 		
 This Arduino library doesn’t work on ESP. How do I make it working?

 		
 In the IDE, for ESP-12E that has 4M flash, I can choose 4M (1M SPIFFS) or 4M (3M SPIFFS). No matter what I select, the IDE tells me the maximum code space is about 1M. Where does my flash go?

 		
 I have observed a case when ESP.restart() doesn’t work. What is the reason for that?

 		
 How to resolve “Board generic (platform esp8266, package esp8266) is unknown” error?

 		
 Exception causes

 		
 Debugging

 		
 Introduction

 		
 Requirements

 		
 Usage

 		
 Informations

 		
 For Developers

 		
 Stack Dump

 		
 Introduction

 		
 Decode

 		
 Using with Eclipse

 		
 What to Download

 		
 Setup Arduino

 		
 Setup Eclipse

 		
 Eclipse wont build

 		
 Changelog

 		
 2.3.0

 		
 Core

 		
 Libraries

 		
 Tools

 		
 2.2.0

 		
 Core

 		
 Libraries

 		
 Tools

 		
 2.0.0

 		
 Core

 		
 Libraries

 		
 Tools

 		
 1.6.4-673-g8cd3697

 		
 Tools

 		
 Libraries

 		
 1.6.4-628-g545ffde

_images/ESP_Exception_Decoderp.png
@ Arduino File Edit Sketch

Auto Format

Archive Sketch

Fix Encoding & Reload ctx: sys
ESP_RF12B_RCY Serial Monitor sp: 3ffffd70 end: 3ffffbO offset: 01a0

#include <ESPAZGENLF.h> Serial Plotter >>>stack>>>

Sretae et | esPEceponpecoder | bt 4omners 5120 sob0an0

Sinclude SPLm
3ffee8d 402 1baf1 3ff0d20 00000000
Finctude <SSbise. o I EEEI DU 3ffee844 3ffee820 0000cccc 4021bac0

#include <RFMIZB_ESP.h> 69b13f15 000019dc 00000001 00000011
#include 00000000 00000000 4021a8f6 3fffocds
3fff0b98 3ffedbe 3fff0bI8 4021968b
3fff0b98 00000014 40219¢36 3fffOcds
3fff0b98 3fffdc80 3fff0c38 00000001
402255ef 3fff0cd8 00000000 40205bdb.
40000749 3fffdab0 3fffdab0 40000149
<<<stack<<<

#define ENABLE_SERIAL_DEBUG
#define RFMIZENODEID 1
#define RFMIZB_NETWORK_ID 100

Debug Level: "None"
* ssid - [Reset Method: “nodemcu”

* password =

Flash Frequency: "80MHz' Decoding 9 results.

//ADC_MODE(ADC_TOUTY; Upload Using: "Serial* 0x402 1 tec7- tep. nput at 722
Ssb1306 disploy CPU Frequency: "160 MHz" 0x4021bee2: ip_input at 727
Brewire dscity; Upload Speed: "115200" 0x4021baf 1 ipaddr_aton at 727

0x402 1bae0: ipaddr_aton at 77:7
0x4021a8f6: dns_tmr at 727

/devjcu.usbserial-A5028581"

Y YYYYYYVYVYVVYY

ds_oder(8]; 0x4021968b: dhcp_stop at 77:7
ds_data[12]; 0x40219¢36: node_remove_from_list at 72:7
typedef cnum { DS_IDLE, DS_START, DS} 0x402255ef: aes_wrap at 777

o.state t ds_state - S TOLE; 0x40205bdb: MDNSResponder::addserviceTxt(char*, char*, char®, char) at

/Users [ficeto/ Desktop/ESP8266/ Arduino-Main/ build/macosx /work Arduino.app/ Contents /Java/ hardware/esp8
Decodte Success 266com/esp8266/libraries /ESP8266mDNS/ESP8266mDNS.cpp: 181

Library SPI at version 1
Library Wire at version 1
Library SSD1306 in fold

Library RFMIZE_ESP in fol

Library Onelfire in fold

Library ESPs
1 lcafaro synchronize #151

1 lcafaro synchronize #151

mcu, Dis ® DualitvaY closed #1517

_images/ESP_improved_stability.png
R2
10k

REST TXD
ADC RXD
CH_PD GPIO%
GPIO16 GPIO4
GPIO14 GPIOQ
GPI012 GPIO2
GPIO13GPIO15
VCC GND

C1 us1
ESP8266_ESP-12

— N|L0 4>|Ln|m|\||oo

10k

100n

k=

GND

_images/ESP_min.png
Jillal

= %
o REST XD o
i ADC RXD L
1 Ciro orios |2
1 GFidis crios |2
o Gore con [
Groiz arios
i GPIO13 GPIO15 -
i vee GND . -
E

Espazen_ESP12

10K

R3

_images/ESP_to_serial.png
v ava . ava v
_Power supply
ND
£ s sl ol
RESET |RTS
g 8 IX X
REST XD
ﬁ' ADC RXD ; RX JX
L crPD GPIOE
GPID1E GPIO4
2 Gpio4 Gpioo |- L GPIO0 | PTR
£ Gpio12 crio2 |2
GPID13GPIONS
lm vec ono [GND GND
c1 TTLto USB
E5Pa266_ESP-12 Entd V3
100n]
GND

_images/a-ota-external-serial-terminal-output-failed.png
07 115200 bps, 811, no handshald] [Setungs | [Gear] ([About | _J
PrOgess v
Progress: 92%

[Progress: 35%
[Progress: 36%

[Progress: 37%
[Progress: 38%

Failed attempt

ets Jan 8201315t cause:2, bootmode (1.6)

ets Jan 8201315t cause:4, boot mode (1.6) "
Failed attempt

fucitreset

_images/a-ota-ota-port-selection.png
BsicOTA | Aruino L6 o
e £t Seetch (oo Hel

Auto Format T EI

BasicC FixEncoding & Reload N
i P s | °

E5Pa266 Sketch Dota Uplosd

B Flash Size: "8M (3M SPIFFS) »

[d
! Programmer: "AVRISP midl " =
oop() Bum Bootioader i

comm

otahygrostatof
OTA DimSite

5PR265 Mode)
i< SPR2S5 Mode)

_images/a-ota-ota-upload-complete.png
BasicOTA | Arduino 167

Done uploaiing

OTA upload
complete

_images/a-ota-external-serial-terminal-output.png
<ts Jan 82013 st couse 2 bootmode(36)

load 040101000, len 1264, room 16

_images/a-ota-network-terminal.png

_images/a-ota-serial-upload-configuration.png
#inolude sy
sincruae s
sincsae <iiz|
#nclude crrd

void setupl)
Sersal.zeqs
Serta pris]
WiFs mode (]
Wit begin
wnse i
Serial.p:
aetay (50

Fash Size "4M (M SPIFFS)”
Uplosd Spesd: S21600"

Port“CoMID"

CtoshiteM
Culeshin-L

_images/a-ota-sketch-selection.png
N oo
oo G .
- s o] load this sketch

apoes OTALed:

Pagesep CuteshitsP
pin e

Preersnces CteComma | gy

DallsTemperature ‘l

_images/a-ota-ota-upload-configuration.png
) 8ascOTA | Arduino 1

Fie_Eat_Sceten [Too Help

BaskoTAS
Serialps

Serat peiil
)

vets 10090 {

Ao Formst
Avchiv Sketch
FiEncoding & Relosd
Seri Moritor

Seri Ploter

E59A265 Setch Dta Uplosd

Board: NodeMCU 10 65012
CPU Frequency: B M
Flsh e "4M GM SPIFFS”
Uplosdspecd: ‘921600°

Programmer ‘AVRISP midl”
Bum Bootioader

changed configuration

Arduincom.

_images/a-ota-python-configuration.png
B Python 2710 Setup.

)
A

pyth
windows

Customize Python 2.7.10

Selec the way you want features t0 be staed.
Gkon e e n i s bk o conce e

Way fatures il be taled

=

Sl rame

S| ocaumentaton
5] iy Sarpts
=T
S

Prepend C:pythani7) to the sstem Path
varate. Tris aows you t type pythort o a
command prompt without nesdng the fl path

Ths fature requies 0GB o your hard ive.

Fegster Bxtersions 5

[oskusage] (‘advanced |

[C<bak J(hext>]

[Ceone)

_images/a-ota-upload-complete-and-joined-wifi.png
BasicOTA | Auino 167

ddrese: 12,160 1.1

2) module successfully
joined Wi-Fi network

9 tszrod Noloeendng +

115200

_images/a-ota-upload-password-authenticating-ok.png
BasicOTA | Arduino 167

Done uploading

Authentication
successful

HodeMCU 1.0 (E6512E Mocule, 00 ik, Sena. 115200, 0 M SPIFES) o 102 19 1102

_images/a-ota-ssid-pass-entry.png
replace ¥ r sk ax s

with SSID and password

to your Wi-Fi network
-

_images/a-ota-upload-password-prompt.png
BasicOTA | Arduino 167 =

BssicOTh -

e ——— 112305

 AcduiooO onSEazLl1L0. L
B

Type bosrd pasnord o uoed e setch

fo—

STee it (ereor = OTA_BEGTILERRGR) Seriel
e i (error - OTA_CONECT_FRSOR) Serial.priacin(a

Uplosding —_—

27H060ME 10 E5P-126 Mo 60 M St 115200, 4 OM SPIFS)on 1021681102

_images/a01-board-selection.png
@ Blink | Arduino 169 =1 5| Generic ESP8285 Module

File Edit Sketch ESPDuino (ESP-13 Module)
Auto Format T Adsfruit HUZZAH ESP255
Archive Sketch ESpresso Lite L0
Fix Encoding & Relosd ESpresso Lite 20
Serial Monitor CtrleShift=M. Phoenix1.0
Serial Plotter CtleShiftsL Phoenix20

NodeMCU 0 (ESP-12 Module)

£5P Exception Decoder
P Exception Decoder © | NodeMCU 10 (ESP-12€ Module)
void serup() | |ESPB206 Sketch Data Upload Olimex MOD-WIFI-ESP266(-DEV)
pintode (LED) y
, Board: "NodeMCU 10 (ESP-12E Module)”) SparkFun ESPE266 Thing
CPU Frequency: 160 MHz | SparkFun ESP8266 Thing Dev
// the 1000 £ Flash Size:"AM BM SPIFES)) SwestpeaESp-210
void loop() | wo21600" -
Upload Speed: 921 } WeMos D1 R2 & mini
[T By e N
0 Port: "COM3" } WeMos D1(Retired)
Get Board Info ESPino (ESP-12 Module)
ThaiEasylec’s ESPino

Wiflnfo

_images/a-ota-upload-password-passing-again-upload-ok.png

_images/a-ota-upload-password-passing-upload-ok.png
Password passing

to upload script

_images/a01-circuit-nodemcu-reset.png
Testing of nodemcu Reset Method

To the Scope or Logic Analyzer

_images/a01-boot-mode-decoding.png
Boot
GPIO15

n Not valid
1 ov ov 3.3v UART
2 ov 3.3v ov Not valid
“ ov 3.3v 3.3v Flash
n 3.3v ov ov SDIO
“ 3.3v ov 3.3v SDIO
n 3.3v 3.3v ov SDIO

ets Jan 8 2013, rst cause:2, boot mode:(1,7) 33v 33 3 spo

#|= ((GPIO15<< 2) | (GPIO0<< 1) | GPIO2);

_images/a01-circuit-ck-reset.png
Testing of ck Reset Method

To the Scope

or Logic Analyzer

USB to Serial Converter

_images/a01-example-boards-with-usb.png
CP2102

USB to UART CH340G
USB to UART
CP2104
USB to UART
FT231XU
CH340G USB to UART

USB to UART

_images/a01-example-boards-without-usb.png
MOD-WIFI- i
ESP-01 ESP8266-DEV WROOM-02 ESP-12E ESP-07

ESP8266 Thing ESP-12 Test Board HUZZAH ESP8266

_images/a01-espcomm_open-failed.png
Sketch uses 222,269 bytes (21%) of program storage space. Maximim is
Global variables use 31,588 bytes (38%) of dynamic memory, leaving 5(
Failed to open COM3
espcomn_open failed
espcomm_upload_rem failed

NodeMoU 1.0 (ESP-12E Module). 180 Mz, 621500, 41 (31 SPIFFS) on COM3

_images/a01-espcomm_sync-failed.png
Sketch uses 222,269 bytes (21%) of program storage space. Maximim is
Global variables use 31,588 bytes (38%) of dynamic memory, leaving 5(
warning: espeomm_syne failed

espcomn_open failed

espcomm_upload_rem failed

NodeMoU 1.0 (ESP-12E Module). 180 Mz, 621500, 41 (31 SPIFFS) on COME

_images/a01-reset-ck-complete-1-retry.png
Input &

6.00

m Upload end

4.00

3.00

200V

-1.00

[

-2.00

1.92s 2s/Div

R)

Datablock

.:] Name =Inputh Input B
Date =6/25/2016 |6/25/2016
Time =141950 141350
YScale =1 V/Div|1 V/Div
Y At50% = 200V 200V
XScale =2 sDiv|2 s/Div
XA0%Z =1.92s 1.92s
X Size =300(300) |300(300)

Maximum = 368V 368V
Minimum = 0.00V 0.00V

Cursor Values
X1: 008s
X2: 11.84s
dX: 11.76s
Y1: 000 004V
Y2: 086 360V
dY: 096 356V
Input A: GPIO0
Input B: RST
Reset Method: ck

_images/a01-reset-ck-complete.png
Input &

2
800 ¥ & . Datablock
) H J Name =InputA Input B
; : Date =6/25/2016 |6/25/2016
; : Time =142246 |14:22:48
; : YScale =1 V/Div[1 V/Div
500 : ; YA50% = 200V | 200V
; XScale =1 s/Div|1 sDiv
: XA0% =-0%s [096s
Board reset f Upload end XSize =300(300) [300(300)
4.00 H Maximum = 368V 364V
: : Minimum = 0.00v | 000V
Cursor Values
: 2045
800s
595
228 232V
232 23V
004 0.04V
100
b ; Input A: GPIOO
b : Input B: RST
20 . Reset Method: ck

096s 1s/Div

_images/a01-nodemcu-reset-implementation.png
Auto program circuit
DTR RTS RST GPIOO

1
0
1
0

1
0
0
1

1
1
0
1

1
1
0

i

100nE

_images/a01-reset-ck-closeup.png
N

6.00

5.00

Board reset
4.00

3.00

1.00

5

0.00

-1.00

-2.00 a

36 ms

Input A

100 ms/Div

Datablock

1 VDiv
200V

Input B
6/25/2016
141618
1 Vv
200V

00 ms/Div[100 ms/Div

Y1: 000 004V
Y2: 236 238V

96 ms 96 ms

0 (300) 300(300)
356V 356V

Minimum = 0.00V 0.00V
Cursor Values

X1: 204ms

X2: 800ms

dX: 5%ms

J dY: 238 23V

Input A: GPIO0
Input B: RST
Reset Method: ck

_images/a01-reset-nodemcu-closeup.png
5.96

1
T

Board reset

4396

396

B

104 ;

204 i
-20.0ms

Input &

Datablock
Name =Inputé Input B
Date /26/2016 | 6/26/2016

0:47:19 10:47:13
1 ¥MDiv [1 V/Div
196V 196V
10 ms/Div| 10 ms/Div
200 ms 200 ms

Time

00 (300) 300 (300)
340V 332V
Minimum = -0.04V 0.04V
Cursor Values
X1: -Ddms
X2: 240ms
dX: 244ms

Y1: 33 33V
Y2: 000 328Y

dY: -336 -0.08V

Input A: GPIO0
Input B: RST
Reset Method: nodemcu

10 ms/Div

_static/comment-close.png

_images/a01-reset-nodemcu-complete-2-retries.png
6.00

5.00

4.00

3.00

200V

1.00

0.00

-1.00

-2.00

192s

e

Board reset

PS

Input &

Upload end

2 s/Div

Datablock

Name =Input& Input B
Date =6/25/2016 |6/25/2016
Time — =143232 [14:32:32
YScale =1 W/Div|1 V/Div
Y At50% = 200V 200V
XScale =2 s/Div|2 s/Div
XAL0% =-192s 1.92s
XSize =300(300) |300(300)
Maximum = 3.72V 368V
Minimum = 0.00V 0.04V

Cursor Values
.00 s
344s
3445
000 340V
004 344V
0.04 004V

Input A: GPIO0
Input B: RST
Reset Method: nodemcu

_static/down-pressed.png

_static/comment.png

_static/down.png

_images/update_memory_copy.png
start:

current sketch spiffs

update:

current sketch new sketch spiffs

reboot:

new sketch spiffs

_images/udp-packet-sender.png
25 Packet Sender

EEE]

Name Viecame pacet
ASCIL Helo Work

X meSececs ;76 2606921

9 Press send

@ select UDP

o]

heserdotr]

adtress 192.168.1.104

e

Send

Name Resend(e) Toaddess ToPot Metod

1 [send] Welcome packet 0

Hello World! 4B656c6c6r205761726¢6421

s hex

G st Eocrrnse)

e

1 71023358 pm 1921681104 4210
2 e 71023355 pm You
3 % 71018107 pm 1921681104 4210
4 71018067 pm You

ascu hex
Hithere Gotthe message 96920746365 72652120 9767 73
Hello World: 48656¢6c6120576726c6421
Hithere Gotthe message - 486920746865 7265 2120 4765 74
Hello Word! 48656¢6c6120576726c6421

r
I © cnec«the los

_static/ajax-loader.gif

_images/wifi-simple-connect-terminal.png
.7l lefl @&l E1iblZ i
(Connect:

Connected, 12 address: 192.162.1.10

_static/comment-bright.png

_images/a01-serial-speed-selection.png
Upload Speed: "115200"
Port: "COMB"
Get Board Info.

Programmer: "AVRISP midl
Burn Bootloader

_images/a01-test-stand.jpg

_images/a01-secondary-serial-hookup.png
Testing of NodeMCU Entering Boot Loader Mode

Secondary

USB to serial
converter

_images/a01-serial-port-selection.png
Upload Speed: "921600"

Port: "COM3" Seral ports
Get Board Info. v coms

_images/a02-decode-stack-tace-3-6.png
2 Sof WOT-Bample] Aduino 169

Py =]

£ Sketch Tools Help

Paste stack trace to the
ESP Exception Decoder

@ The last line of code before
s/w watchdog timer fired is here!

@ Check the line code number
pointed by the top of stack

(ox4020120c: satup s C:\Usaze\Keayascor\Dasksop\Sofs_UT-Exaple/Soft_VDT-Exsmple. ino 1ise 5
(0x40201£00: loop_ vrapper at C:\Unaxs\Kesyastof\AppDaca) ookl \ Arduine 15\pacKagas\espBZ6\ Rardaze\se 26612
(0240100134 comt_norm =t C:\Usaza\Kesyastaf\ppDusal Local \Arduina16\packages\ampia mpazeez 3

| | =

|
© Find that line code
number in the sketch

_images/a02-exception-cause-decoding.png
Exception Causes (EXCCAUSE)

Cause Name.

legalinstuctionCause.
SyscatCase

InstctionFelchErorCause

Cause Deserption

IHegalinstuction
SYSCALL nsruction

Processor el physical addros o data
oo dutng nstrcton flch

epe1=0XU0106679 epc2=0300000000 €pEI=0KO000000D EXCVASAZ=IXODU0000D depe=0K0000000

sp¢ sezernen ena: sereraso ortsec: 0180

sececaso: geeserte 00000000 Ierecats s020171c
ffefai0: feefefte feefefte Yefeeddl 40202364
pop—

ets a2 2013, 53t caus

. boot. sede: (3,6)

tes1 0
ehcssm 0x0¢
pe———

loieardng <] [ssmnbed <

Roguired.
Option

Excepton
Excepton

Excepton

es

_images/a01-usb-to-serial-loop-back.png

_images/a02-decode-stack-tace-1-2.png
Seows

Pt @el o
lLects provoke che o/ wdt of ESP firing.

=
—

b7, 152 basonionati b paTLsIs

the stack trace

© 5o WDT-Ecample Ardino 163

|

)

@ start

Help
auto Format
ArchiveSeetch
FiEncoding & Reload
Seril Monior

Seril Plotter

(E5P-128 Modutey
e

ecetsan: ceaterse sesteste sezeeno so201ce0
[scrersio: _reererse seatarse 3rreesa sotomiie ESP Exception Decoder
e 7 o Sz "4 M SPFES|
Serial.prin s
s Jan & 2013,79% cause:z, boot mode: (3,61 UploadSpes 115200

fveoooonte

sp: 3£rerisn end: 3rrersi ortesc:

svstacions

2 provoke the s/ wit of £57

50 1)

Por:"CoM
GetBosrd o

Programmes "AVRISP mi
Bum Bootosder

[E=jEch =]

et

Coteshitend
CeshiteL

_images/a02-hw-watchdog-example.png
(=)

H/W watchdog timer triggered

[reser
02000, 1en 1264, zo0m 16

oine iy <] (152080 <]

_images/ota-web-show-verbose-compilation.png

_images/ota-web-serial-monitor-reboot.png
=

Dass cobl Ligieder

ot

i1 a1 S61 8 a2 cicma s caogtrona
cing Skeseh.
[iT7epdaceServer zeady! Open hecp://espe2eé-vebupdace. local/update 1n your brovser

ts Jan 2013, z5% cause:2, boos mode: (3,6)

B e
= ﬁ

——
fFTTupsaceserver reuy! Open hucp://espea6e-webupduce. local/update i your broveer

|
< 0
Noineening+ [115208me < |

9] Avosaol

_images/termite-configuration.png

_images/server-browser-output.png
http://1921681104/ O ~ ¢ 1921681104 x
p

_images/a01-reset-nodemcu-complete.png
596

e e Py

496

Board reset

396

296

1.96V

036

-0.04

-1.04

P s

-2.04

-200s

Input &

1 s/Div

Frem

Upload end

Datablock
ﬂ Name =lnputé Input B
Date /26/2016 |6/26/2016
Time 1:2307 [11:23.07
YScale =1 V/Div|1 V/Div
Y At50% = 1.96V 196V
XScale =1 sDiv|1 s/Div
XAt0% =-200s 2.00s
X Size 00(300) (300 (300)
Maximum = 3.40V 336V
Minimum = 0.00V 0.08V
Cursor Values

004s

804s

8.00s

000 328V

020 332V

0.20 0.04v

Input A: GPIO0
Input B: RST

Reset Method: nodemcu

_images/a04-contents-of-package-folder.png
)1 « Koo » sopoun » Lot » St » puciges » s + e » =i » o e e

Ougurice v Incodeintbeary + Sharewth v Bun Neafolder

A ot
8 Downioass nmisaas Fiefoder
5 Recent Plces e

(= Delete the older folder

_images/a04-contents-of-preferences-folder.png
Path to Arduino IDE preferences |

OO - {0 € G+ R s sogons o+ e s

~ o) [Searn A

Organize v Indude nfiray = Sharewith v B Newfolder

8 Downloads. 4 Nome N Date modified Type.
W RecenePhces. U packages Tamsiess Fiktolde
B ogs ISss Fictoder
T vy ndesjson smensm soNFe 150
0 package spi2ibcom indecson s ONFie x66
1 package spitcom indesonsigtmp 318/0060% TP Fle e
T pacage indecion asamis sONFe s
L package indexisonsia ems S 16
7 prfrencest U Tes Document 166

_images/a04-arduino-ide-preferences.png
Fle) et Sketch
New

Open.

Skatchbook
Euamples

Close

O select oy

Preferer

nces

Preerences

(1000
asgican
aetay(2000);

2 i Ardine 1611

Tools Help
e
w0

Open Recent

cuow
culss
Culsshites

Ctashitep
cuep

CurleComma

g

Settboolocstes

s Koz osmensprdre] =
et e Srenoeteit

et o 2

+] equresrestr of i)

Intce s Automate | 100159 equresestartof Ao
Srom verbose vt g [complan [upiosd
Conpier warnnge: ove~
Deply Inermbers.
e ode otiog
) Vertycode fer s
Use extens edtor
(heckfor odtes o st
1] Updte st st e exenononcve (e > o)
0] ve when vertg o uloding

Adkditonal Boards Manager URLs: | htps/ordno.e508265.comstabe ockage_e8286com_index.sson (=]

i mea Vomrmifpopbata Lo a1 efernces txt

@ Click to open this path

_images/a04-board-is-unknown-error.png
Error slightly differs depending on
selected board type e.g. generic,
nodemcu2, huzzah, d1_mini, etc.

_images/client-example-domain.png
B]

 Eomple Domain

Example Domain

This domain is established to be used for illustrative examples in documents. You
may use this domain in examples without prior coordination or asking for permission.

More information.

_images/client-secure-check-fingerprint.png
Certificate

General | Detais | Certication Path

B e —

Feld
5] CRL Distrbuton Points

] Certcate Poices

1] Authority Informaton Access
liJrey usage

i JBasic Constraints

[l humbprint lgorithm
[Elthumbprint

-
[1]CRL Distribution Point: Distr..
[1)Certificate Policy:Policy Ide..
[1]Authority Info Access: Acc...
Digital Signature, Key Encipher.
Subject Type=End Entity, Pat..

o g

059889 ca e d Se Sce.

of 05 98 89 ca if 8
o6 o3 o7 50 dd So

Ed

Learn more about certficate detalls:

a8 Se 5o o0 o2 =d £7

it Propertis. Copy to ...

_images/a04-remove-package-no.png
No need to remove current package
if changing the version

ity version 23012 IHSTALLED.

=2

- Olimex MOD-WIFI-ESP6266(-DEV), NodeMCU 0. (£59-12 Hodile), NodeMCU 1.0 (ES5-12€ Modl),
B (65712) EsPreseo Lt 1.0, ESPrasza Lt 2.0 SparkFun Thing, SvestPes ESP-210, WeMos D1, Wallos
2 Module), ESPins (WROOW-03 Module), Winfo, £32Duine.

_images/a04-remove-package-yes.png
AMEL Tech Boards 5 replaced by Arrow Boards
Boardsincluded in i packaper
Smareuanthing For.

Seectieson v et

Remove current package
if changing between
staging and stable releases

_images/a02-sw-watchdog-example.png
S/W watchdog timer triggered

opt s2zem70 ena: arretase ottsens 0100

P

Seratizo: caoasean oseans Srreecss weorers]

sececasn: seesere 00000000 sefeedte soz017c [~ Use Arduino ESP8266/ESP32
sefetain: cecteste tenterte serecaio sn202364| | Exception Stack Trace Decoder

ets an 2 2013, 29t cause:2, boot sode: (3,6)

108a oxdo101000, 1en 1264, ro0m 16

tolocate where it has been triggered

[Noie ~] (152000 <

_images/a02-typical-crash-log.png
Exception code

€pe2=0X00000000 ¢pc3=0x00000000 excvAG4E=0X0U0O000 depe=aaADTA0D

Sttemmon ena: setercan otese: 01a0

secacioss
Seeseete seeterte seseccse so201e10 || Stack trace
=

Seetette festerte defeece0 40202456

R U] .

_images/doxygen-example-station-hostname.png
bool ESP8266WiFiSTAClass::hostname (char * aHostname)

‘Set ESP8266 station DHCP hostname

Parameters

aHostname max length:32

Returns.
ok

_images/doxygen-example-udp-begin.png
}_t WiFiUDP::begin (uint16_t port)

‘ Definition atline 77 of e WiFiUdp.cpp.

_images/doxygen-esp8266wifi-documentation.png
5] ChUsers\Kysaton\Documents\Projecs\esp2666-doclespS2B6witDoryencl 2 - O || @ Espezsawirs ESPaZBoWiL.

(<]

ESP8266WiFi :

@ ESP8266WiFi Library Documentation

PR ...

Q searcn

Publc Member Funcions | Friends | Lst o sl members.

G| Cor | ooy ot |
v EsPazeW
axTLs APl ~ | ESP8266WiFiClass Class Reference
» Modules
v Classes #include <ESPE26GWIFi.h>
¥ Class ist
» BufferDataSource: Inheritance diagram for ESP8266WiFiClass:
» BufferedStreamDataSource ESPO2BOWIFIGenericClass | | ESPO2GBWIFISTACIass | | ESPG26EWIFIScanClass ESPB2BBWIFIAPClass
» ClientContext i 1 f ¥
» EspazssnFAPCisss

Public Member Functions

» ESPA2EEWIFiGenericCiass
» ESPEEWIFMui void printDiag (Print &dest)
» ESPA2EEWIFiScanClass
» Public Member Functions inherited from ESP8266WiFiGenericClass
» ESPA2ESWIFISTACHSS
» ProgmemsSream » Public Member Functions inherited from ESPE266WiFiSTACIass
= » Public Member Functions inherited from ESP8266WiFiScanClass
» SSLContext X o
R /| »Public Member Functions inherited from ESP8266WiFIAPClass
< >

—

A~

_images/doxygen-example-station-begin.png
ssid,

const cha

passphrase = NULL,
int32_t channel = o,
constuints_t* bssid - NULL,

bool connect = true

Start Wifi connection if passphrase is set the most secure supported mode will be automatically selected

Parameters
ssid const char® Pointer to the SSID string.
passphrase const char * Optional. Passphrase. Valid characters in a passphrase must be between ASCI| 32-126 (decimal).
bssid uints_t] Optional. BSSID / MAC of AP

channel Optional. Channel of AP

connect Optional. call connect
Retums

Definition at line 97 of file ESP8266WIFiSTA.cpp.

_images/esp8266-arduino-build-status-travisci.png
it tais<iorg spa2s Avdine £ - 808 epsandino- Tmizar

Help make Open Source s beter place and start budingbetter software today!
Build status e " ° v

Travis Cl Bog swws Help

esp8266 / Arduino € czE=m

Cument Branches BuildHistory Pull Requests

 master optimize uart pxisr and lower fifo full reshold (2355) o #1545 passed

_images/esp12.png
ESP-12

_images/esp8266-arduino-build-status-json.png
) haps/apigitnhcomire, x

€ - € @ httpsy/apigithub.com/repos/esp8266/Arduino/commits/master/status

[scacer: wsuccesa]

0L 10pL TR Concepon APRIE e A TAAR B LAAABASG LA BCEISIMTATIRERS",

seseription n.’. Travis CI build passed,
Cearget_urk"s “Wttpsi//travis-ciorg/espa2ss/Arduino/bul s/ 14sEZT8",
- onteri": "continiaus-intesrationsteay sl /o

_static/up.png

_static/minus.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_images/debug_port.png
Datei Bearbeiten Sketch | Werkzeuge | Hife

Automatische Formatierung StrgsT
Sketch archivieren

sketeh_jan0Bas Kodierung korrigieren & neu laden

. Serieller Monitor Strg+Umschalt-M
Serial.begin(l

ESPB266 Sketch Data Upload

Platine: *Generic ESP3266 Module"
loop() { Flash Mode: "QIO

Flash Frequency: "80MHz"

Upload Using: “Serial"

CPU Frequency: "80 MHz"

Flash Size: "512K (64K SPIFFS)"

Debug port: "Serial" Disabled

o] serial

Serall

Programmer: "AVRISP mkl"

Bootloader brennen

Gensric ore + Wi

_images/doxygen-class-index.png
BufferDataSource
BufferedStreamDataSource

ESP8266WiFiGenericClass WiFiEventSoftAPModeProbeRequestReceived
a ESP8266WiFiMulti WiFiEventSoftAPModeStationConnected
UdpContext WiFiEventSoftAPMode tationDisconnected

WiFiEventStationModeAuthModeChanged
n WiFiEventStationModeConnected
WifiAPlist_t

ClientContext

DataSource

ProgmemStream

WiFiEventStationModeDisconnected

_images/debug_level.png
Datei Bearbeiten Sketch | Werkzeuge | Hife

sketch_jan06a §

Serial.begin(l

loop() {

Automatische Formatierung StrgsT
Sketch archivieren
Kodierung korrigieren & neu laden

Serieller Monitor
ESPB266 Sketch Data Upload

Platine: *Generic ESP3266 Module"
Flash Mode: "QIO

Flash Frequency: "80MHz"
Upload Using: “Serial"

CPU Frequency: "80 MHz"
Flash Size: "512K (4K SPIFFS)"
Debug port: "Serial"

Debug Level: "Core {\Wi
Reset Method: "ck”

Upload Speed: "115200"

Port

Programmer: "AVRISP mkl"

Bootloader brennen

Strg+Umschalt-M

None
Core

Core + S5L

Core + Wifi

WiFi

HTTPClient

HTTPUpdate

HTTPClient + HTTPUpdate
HTTPClient + HTTPUpdate + Updater
HTTPServer

Updater

oTa

OTA + Updater

Al

ore + Wi

