

Welcome to ESP8266 Arduino Core’s documentation!

Contents:

	Installing
	Boards Manager

	Using git version

	Reference
	Digital IO

	Analog input

	Analog output

	Timing and delays

	Serial

	Progmem

	Libraries
	WiFi(ESP8266WiFi library)

	Ticker

	EEPROM

	I2C (Wire library)

	SPI

	SoftwareSerial

	ESP-specific APIs

	mDNS and DNS-SD responder (ESP8266mDNS library)

	SSDP responder (ESP8266SSDP)

	DNS server (DNSServer library)

	Servo

	Improved EEPROM library for ESP (ESP_EEPROM)

	Other libraries (not included with the IDE)

	File system
	Flash layout

	File system limitations

	Uploading files to file system

	File system object (SPIFFS)

	Filesystem information structure

	Directory object (Dir)

	File object

	ESP8266WiFi
	Introduction

	Class Description

	Diagnostics

	What’s Inside?

	OTA Updates
	Introduction

	Arduino IDE

	Web Browser

	HTTP Server

	Stream Interface

	Updater class

	PROGMEM
	Intro

	Declare a flash string within code block.

	Functions to read back from PROGMEM

	How do I declare a global flash string and use it?

	How do I use inline flash strings?

	How do I declare and use data in PROGMEM?

	How do I declare some data in PROGMEM, and retrieve one byte from it.

	In summary

	Using GDB to debug
	CLI and IDE Note

	Preparing your application for GDB

	Starting a Debug Session

	Example Debugging Session

	ESP8266 Hardware Debugging Limitations

	Boards
	Generic ESP8266 Module

	Serial Adapter

	Minimal Hardware Setup for Bootloading and Usage

	ESP to Serial

	Minimal

	Improved Stability

	Boot Messages and Modes

	Generic ESP8285 Module

	ESPDuino (ESP-13 Module)

	Adafruit Feather HUZZAH ESP8266

	Invent One

	XinaBox CW01

	ESPresso Lite 1.0

	ESPresso Lite 2.0

	Phoenix 1.0

	Phoenix 2.0

	NodeMCU 0.9 (ESP-12 Module)

	NodeMCU 1.0 (ESP-12E Module)

	Olimex MOD-WIFI-ESP8266(-DEV)

	SparkFun ESP8266 Thing

	SparkFun ESP8266 Thing Dev

	SweetPea ESP-210

	LOLIN(WEMOS) D1 R2 & mini

	LOLIN(WEMOS) D1 mini Pro

	LOLIN(WEMOS) D1 mini Lite

	WeMos D1 R1

	ESPino (ESP-12 Module)

	ThaiEasyElec’s ESPino

	WifInfo

	Arduino

	4D Systems gen4 IoD Range

	Digistump Oak

	WiFiduino

	Amperka WiFi Slot

	Seeed Wio Link

	ESPectro Core

	FAQ
	I am getting “espcomm_sync failed” error when trying to upload my ESP. How to resolve this issue?

	Why esptool is not listed in “Programmer” menu? How do I upload ESP without it?

	My ESP crashes running some code. How to troubleshoot it?

	How can I get some extra KBs in flash ?

	About WPS

	This Arduino library doesn’t work on ESP. How do I make it work?

	In the IDE, for ESP-12E that has 4M flash, I can choose 4M (1M SPIFFS) or 4M (3M SPIFFS). No matter what I select, the IDE tells me the maximum code space is about 1M. Where does my flash go?

	I have observed a case when ESP.restart() doesn’t work. What is the reason for that?

	How to resolve “Board generic (platform esp8266, package esp8266) is unknown” error?

	How to clear TCP PCBs in time-wait state ?

	Why is there a board generator and what about it ?

	Exception causes

	Debugging
	Introduction

	Informations

	Stack Dump
	Introduction

	Using with Eclipse
	What to Download

	Setup Arduino

	Setup Eclipse

	Eclipse wont build

Installing

Boards Manager

This is the suggested installation method for end users.

Prerequisites

	Arduino 1.6.8, get it from Arduino
website [https://www.arduino.cc/en/Main/OldSoftwareReleases#previous].

	Internet connection

Instructions

	Start Arduino and open Preferences window.

	Enter
https://arduino.esp8266.com/stable/package_esp8266com_index.json
into Additional Board Manager URLs field. You can add multiple
URLs, separating them with commas.

	Open Boards Manager from Tools > Board menu and find esp8266
platform.

	Select the version you need from a drop-down box.

	Click install button.

	Don’t forget to select your ESP8266 board from Tools > Board menu
after installation.

For more information on the Arduino Board Manager, see:

	https://www.arduino.cc/en/guide/cores

Using git version

This is the suggested installation method for contributors and library
developers.

Prerequisites

	Arduino 1.6.8 (or newer, current working version is 1.8.5)

	git

	Python 2.7 (https://python.org)

	terminal, console, or command prompt (depending on your OS)

	Internet connection

Instructions - Windows 10

	First, make sure you don’t already have the ESP8266 library installed using the Board Manager (see above)

	Install git for Windows (if not already; see https://git-scm.com/download/win)

	Open a command prompt (cmd) and go to Arduino default directory. This is typically the
sketchbook directory (usually C:\users\{username}\Documents\Arduino where the environment variable %USERPROFILE% usually contains C:\users\{username})

	Clone this repository into hardware/esp8266com/esp8266 directory.

cd %USERPROFILE%\Documents\Arduino\
if not exist hardware mkdir hardware
cd hardware
if not exist esp8266com mkdir esp8266com
cd esp8266com
git clone https://github.com/esp8266/Arduino.git esp8266

You should end up with the following directory structure in

C:\Users\{your username}\Documents\

Arduino
|
--- libraries
--- hardware
 |
 --- esp8266com
 |
 --- esp8266
 |
 --- bootloaders
 --- cores
 --- doc
 --- libraries
 --- package
 --- tests
 --- tools
 --- variants
 --- platform.txt
 --- programmers.txt
 --- README.md
 --- boards.txt
 --- LICENSE

	Initialize the submodules

cd %USERPROFILE%\Documents\Arduino\hardware\esp8266com\esp8266
git submodule update --init

If error messages about missing files related to SoftwareSerial are encountered during the build process, it should be because this step was missed and is required.

	Download binary tools

cd esp8266/tools
python get.py

	Restart Arduino

	If using the Arduino IDE for Visual Studio (https://www.visualmicro.com/), be sure to click Tools - Visual Micro - Rescan Toolchains and Libraries

	When later updating your local library, goto the esp8266 directory and do a git pull

cd %USERPROFILE%\Documents\Arduino\hardware\esp8266com\esp8266
git status
git pull

Note that you could, in theory install in C:\Program Files (x86)\Arduino\hardware however this has security implications, not to mention the directory often gets blown away when re-installing Arduino IDE. It does have the benefit (or drawback, depending on your perspective) - of being available to all users on your PC that use Arduino.

Instructions - Other OS

	Open the console and go to Arduino directory. This can be either your
sketchbook directory (usually <Documents>/Arduino), or the
directory of Arduino application itself, the choice is up to you.

	Clone this repository into hardware/esp8266com/esp8266 directory.
Alternatively, clone it elsewhere and create a symlink, if your OS
supports them.

cd hardware
mkdir esp8266com
cd esp8266com
git clone https://github.com/esp8266/Arduino.git esp8266

You should end up with the following directory structure:

Arduino
|
--- hardware
 |
 --- esp8266com
 |
 --- esp8266
 |
 --- bootloaders
 --- cores
 --- doc
 --- libraries
 --- package
 --- tests
 --- tools
 --- variants
 --- platform.txt
 --- programmers.txt
 --- README.md
 --- boards.txt
 --- LICENSE

	Initialize the submodules

cd esp8266
git submodule update --init

If error messages about missing files related to SoftwareSerial are encountered during the build process, it should be because this step was missed and is required.

	Download binary tools

cd esp8266/tools
python get.py

	Restart Arduino

	When later updating your local library, goto the esp8266 directory and do a git pull

cd hardware\esp8266com\esp8266
git status
git pull

Reference

Digital IO

Pin numbers in Arduino correspond directly to the ESP8266 GPIO pin
numbers. pinMode, digitalRead, and digitalWrite functions
work as usual, so to read GPIO2, call digitalRead(2).

Digital pins 0—15 can be INPUT, OUTPUT, or INPUT_PULLUP. Pin
16 can be INPUT, OUTPUT or INPUT_PULLDOWN_16. At startup,
pins are configured as INPUT.

Pins may also serve other functions, like Serial, I2C, SPI. These
functions are normally activated by the corresponding library. The
diagram below shows pin mapping for the popular ESP-12 module.

[image: Pin Functions]
Pin Functions

Digital pins 6—11 are not shown on this diagram because they are used to
connect flash memory chip on most modules. Trying to use these pins as
IOs will likely cause the program to crash.

Note that some boards and modules (ESP-12ED, NodeMCU 1.0) also break out
pins 9 and 11. These may be used as IO if flash chip works in DIO mode
(as opposed to QIO, which is the default one).

Pin interrupts are supported through attachInterrupt,
detachInterrupt functions. Interrupts may be attached to any GPIO
pin, except GPIO16. Standard Arduino interrupt types are supported:
CHANGE, RISING, FALLING.

Analog input

ESP8266 has a single ADC channel available to users. It may be used
either to read voltage at ADC pin, or to read module supply voltage
(VCC).

To read external voltage applied to ADC pin, use analogRead(A0).
Input voltage range of bare ESP8266 is 0 — 1.0V, however some many
boards may implement voltage dividers. To be on the safe side, <1.0V
can be tested. If e.g. 0.5V delivers values around ~512, then maximum
voltage is very likely to be 1.0V and 3.3V may harm the ESP8266.
However values around ~150 indicates that the maximum voltage is
likely to be 3.3V.

To read VCC voltage, use ESP.getVcc() and ADC pin must be kept
unconnected. Additionally, the following line has to be added to the
sketch:

ADC_MODE(ADC_VCC);

This line has to appear outside of any functions, for instance right
after the #include lines of your sketch.

Analog output

analogWrite(pin, value) enables software PWM on the given pin. PWM
may be used on pins 0 to 16. Call analogWrite(pin, 0) to disable PWM
on the pin. value may be in range from 0 to PWMRANGE, which is
equal to 1023 by default. PWM range may be changed by calling
analogWriteRange(new_range).

PWM frequency is 1kHz by default. Call
analogWriteFreq(new_frequency) to change the frequency. Valid values
are from 100Hz up to 40000Hz.

The ESP doesn’t have hardware PWM, so the implementation is by software.
With one PWM output at 40KHz, the CPU is already rather loaded. The more
PWM outputs used, and the higher their frequency, the closer you get to
the CPU limits, and the less CPU cycles are available for sketch execution.

Timing and delays

millis() and micros() return the number of milliseconds and
microseconds elapsed after reset, respectively.

delay(ms) pauses the sketch for a given number of milliseconds and
allows WiFi and TCP/IP tasks to run. delayMicroseconds(us) pauses
for a given number of microseconds.

Remember that there is a lot of code that needs to run on the chip
besides the sketch when WiFi is connected. WiFi and TCP/IP libraries get
a chance to handle any pending events each time the loop() function
completes, OR when delay is called. If you have a loop somewhere in
your sketch that takes a lot of time (>50ms) without calling delay,
you might consider adding a call to delay function to keep the WiFi
stack running smoothly.

There is also a yield() function which is equivalent to
delay(0). The delayMicroseconds function, on the other hand,
does not yield to other tasks, so using it for delays more than 20
milliseconds is not recommended.

Serial

Serial object works much the same way as on a regular Arduino. Apart
from hardware FIFO (128 bytes for TX and RX) Serial has
additional 256-byte TX and RX buffers. Both transmit and receive is
interrupt-driven. Write and read functions only block the sketch
execution when the respective FIFO/buffers are full/empty. Note that
the length of additional 256-bit buffer can be customized.

Serial uses UART0, which is mapped to pins GPIO1 (TX) and GPIO3
(RX). Serial may be remapped to GPIO15 (TX) and GPIO13 (RX) by calling
Serial.swap() after Serial.begin. Calling swap again maps
UART0 back to GPIO1 and GPIO3.

Serial1 uses UART1, TX pin is GPIO2. UART1 can not be used to
receive data because normally it’s RX pin is occupied for flash chip
connection. To use Serial1, call Serial1.begin(baudrate).

If Serial1 is not used and Serial is not swapped - TX for UART0
can be mapped to GPIO2 instead by calling Serial.set_tx(2) after
Serial.begin or directly with
Serial.begin(baud, config, mode, 2).

By default the diagnostic output from WiFi libraries is disabled when
you call Serial.begin. To enable debug output again, call
Serial.setDebugOutput(true). To redirect debug output to Serial1
instead, call Serial1.setDebugOutput(true).

You also need to use Serial.setDebugOutput(true) to enable output
from printf() function.

The method Serial.setRxBufferSize(size_t size) allows to define the
receiving buffer depth. The default value is 256.

Both Serial and Serial1 objects support 5, 6, 7, 8 data bits,
odd (O), even (E), and no (N) parity, and 1 or 2 stop bits. To set the
desired mode, call Serial.begin(baudrate, SERIAL_8N1),
Serial.begin(baudrate, SERIAL_6E2), etc.

A new method has been implemented on both Serial and Serial1 to
get current baud rate setting. To get the current baud rate, call
Serial.baudRate(), Serial1.baudRate(). Return a int of
current speed. For example

// Set Baud rate to 57600
Serial.begin(57600);

// Get current baud rate
int br = Serial.baudRate();

// Will print "Serial is 57600 bps"
Serial.printf("Serial is %d bps", br);

Serial and Serial1 objects are both instances of the
HardwareSerial class.

I’ve done this also for official ESP8266 Software
Serial
library, see this pull
request [https://github.com/plerup/espsoftwareserial/pull/22].

Note that this implementation is only for ESP8266 based boards,
and will not works with other Arduino boards.

To detect an unknown baudrate of data coming into Serial use Serial.detectBaudrate(time_t timeoutMillis). This method tries to detect the baudrate for a maximum of timeoutMillis ms. It returns zero if no baudrate was detected, or the detected baudrate otherwise. The detectBaudrate() function may be called before Serial.begin() is called, because it does not need the receive buffer nor the SerialConfig parameters.

The uart can not detect other parameters like number of start- or stopbits, number of data bits or parity.

The detection itself does not change the baudrate, after detection it should be set as usual using Serial.begin(detectedBaudrate).

Detection is very fast, it takes only a few incoming bytes.

SerialDetectBaudrate.ino is a full example of usage.

Progmem

The Program memory features work much the same way as on a regular
Arduino; placing read only data and strings in read only memory and
freeing heap for your application. The important difference is that on
the ESP8266 the literal strings are not pooled. This means that the same
literal string defined inside a F("") and/or PSTR("") will take
up space for each instance in the code. So you will need to manage the
duplicate strings yourself.

There is one additional helper macro to make it easier to pass
const PROGMEM strings to methods that take a __FlashStringHelper
called FPSTR(). The use of this will help make it easier to pool
strings. Not pooling strings…

String response1;
response1 += F("http:");
...
String response2;
response2 += F("http:");

using FPSTR would become…

const char HTTP[] PROGMEM = "http:";
...
{
 String response1;
 response1 += FPSTR(HTTP);
 ...
 String response2;
 response2 += FPSTR(HTTP);
}

Libraries

WiFi(ESP8266WiFi library)

ESP8266WiFi library has been developed basing on ESP8266 SDK, using naming convention and overall functionality philosophy of the Arduino WiFi Shield library [https://www.arduino.cc/en/Reference/WiFi]. Over time the wealth Wi-Fi features ported from ESP8266 SDK to this library outgrew the APIs of WiFi Shield library and it became apparent that we need to provide separate documentation on what is new and extra.

ESP8266WiFi library documentation

Ticker

Library for calling functions repeatedly with a certain period. Two examples [https://github.com/esp8266/Arduino/tree/master/libraries/Ticker/examples] included.

It is currently not recommended to do blocking IO operations (network, serial, file) from Ticker callback functions. Instead, set a flag inside the ticker callback and check for that flag inside the loop function.

Here is library to simplificate Ticker usage and avoid WDT reset:
TickerScheduler [https://github.com/Toshik/TickerScheduler]

EEPROM

This is a bit different from standard EEPROM class. You need to call EEPROM.begin(size) before you start reading or writing, size being the number of bytes you want to use. Size can be anywhere between 4 and 4096 bytes.

EEPROM.write does not write to flash immediately, instead you must call EEPROM.commit() whenever you wish to save changes to flash. EEPROM.end() will also commit, and will release the RAM copy of EEPROM contents.

EEPROM library uses one sector of flash located just after the SPIFFS.

Three examples [https://github.com/esp8266/Arduino/tree/master/libraries/EEPROM] included.

I2C (Wire library)

Wire library currently supports master mode up to approximately 450KHz. Before using I2C, pins for SDA and SCL need to be set by calling Wire.begin(int sda, int scl), i.e. Wire.begin(0, 2) on ESP-01, else they default to pins 4(SDA) and 5(SCL).

SPI

SPI library supports the entire Arduino SPI API including transactions, including setting phase (CPHA). Setting the Clock polarity (CPOL) is not supported, yet (SPI_MODE2 and SPI_MODE3 not working).

The usual SPI pins are:

	MOSI = GPIO13

	MISO = GPIO12

	SCLK = GPIO14

There’s an extended mode where you can swap the normal pins to the SPI0 hardware pins.
This is enabled by calling SPI.pins(6, 7, 8, 0) before the call to SPI.begin(). The pins would
change to:

	MOSI = SD1

	MISO = SD0

	SCLK = CLK

	HWCS = GPIO0

This mode shares the SPI pins with the controller that reads the program code from flash and is
controlled by a hardware arbiter (the flash has always higher priority). For this mode the CS
will be controlled by hardware as you can’t handle the CS line with a GPIO, you never actually
know when the arbiter is going to grant you access to the bus so you must let it handle CS
automatically.

SoftwareSerial

An ESP8266 port of SoftwareSerial library done by Peter Lerup (@plerup) supports baud rate up to 115200 and multiples SoftwareSerial instances. See https://github.com/plerup/espsoftwareserial if you want to suggest an improvement or open an issue related to SoftwareSerial.

ESP-specific APIs

Some ESP-specific APIs related to deep sleep, RTC and flash memories are available in the ESP object.

ESP.deepSleep(microseconds, mode) will put the chip into deep sleep. mode is one of WAKE_RF_DEFAULT, WAKE_RFCAL, WAKE_NO_RFCAL, WAKE_RF_DISABLED. (GPIO16 needs to be tied to RST to wake from deepSleep.) The chip can sleep for at most ESP.deepSleepMax() microseconds.

ESP.deepSleepInstant(microseconds, mode) works similarly to ESP.deepSleep but sleeps instantly without waiting for WiFi to shutdown.

ESP.rtcUserMemoryWrite(offset, &data, sizeof(data)) and ESP.rtcUserMemoryRead(offset, &data, sizeof(data)) allow data to be stored in and retrieved from the RTC user memory of the chip respectively. offset is measured in blocks of 4 bytes and can range from 0 to 127 blocks (total size of RTC memory is 512 bytes). data should be 4-byte aligned. The stored data can be retained between deep sleep cycles, but might be lost after power cycling the chip. Data stored in the first 32 blocks will be lost after performing an OTA update, because they are used by the Core internals.

ESP.restart() restarts the CPU.

ESP.getResetReason() returns a String containing the last reset reason in human readable format.

ESP.getFreeHeap() returns the free heap size.

ESP.getHeapFragmentation() returns the fragmentation metric (0% is clean, more than ~50% is not harmless)

ESP.getMaxFreeBlockSize() returns the maximum allocatable ram block regarding heap fragmentation

ESP.getChipId() returns the ESP8266 chip ID as a 32-bit integer.

ESP.getCoreVersion() returns a String containing the core version.

ESP.getSdkVersion() returns the SDK version as a char.

ESP.getCpuFreqMHz() returns the CPU frequency in MHz as an unsigned 8-bit integer.

ESP.getSketchSize() returns the size of the current sketch as an unsigned 32-bit integer.

ESP.getFreeSketchSpace() returns the free sketch space as an unsigned 32-bit integer.

ESP.getSketchMD5() returns a lowercase String containing the MD5 of the current sketch.

ESP.getFlashChipId() returns the flash chip ID as a 32-bit integer.

ESP.getFlashChipSize() returns the flash chip size, in bytes, as seen by the SDK (may be less than actual size).

ESP.getFlashChipRealSize() returns the real chip size, in bytes, based on the flash chip ID.

ESP.getFlashChipSpeed(void) returns the flash chip frequency, in Hz.

ESP.getCycleCount() returns the cpu instruction cycle count since start as an unsigned 32-bit. This is useful for accurate timing of very short actions like bit banging.

ESP.getVcc() may be used to measure supply voltage. ESP needs to reconfigure the ADC at startup in order for this feature to be available. Add the following line to the top of your sketch to use getVcc:

ADC_MODE(ADC_VCC);

TOUT pin has to be disconnected in this mode.

Note that by default ADC is configured to read from TOUT pin using analogRead(A0), and ESP.getVCC() is not available.

mDNS and DNS-SD responder (ESP8266mDNS library)

Allows the sketch to respond to multicast DNS queries for domain names like “foo.local”, and DNS-SD (service discovery) queries. See attached example for details.

SSDP responder (ESP8266SSDP)

SSDP is another service discovery protocol, supported on Windows out of the box. See attached example for reference.

DNS server (DNSServer library)

Implements a simple DNS server that can be used in both STA and AP modes. The DNS server currently supports only one domain (for all other domains it will reply with NXDOMAIN or custom status code). With it, clients can open a web server running on ESP8266 using a domain name, not an IP address.

Servo

This library exposes the ability to control RC (hobby) servo motors. It will support up to 24 servos on any available output pin. By default the first 12 servos will use Timer0 and currently this will not interfere with any other support. Servo counts above 12 will use Timer1 and features that use it will be affected. While many RC servo motors will accept the 3.3V IO data pin from a ESP8266, most will not be able to run off 3.3v and will require another power source that matches their specifications. Make sure to connect the grounds between the ESP8266 and the servo motor power supply.

Improved EEPROM library for ESP (ESP_EEPROM)

An improved EEPROM library for ESPxxxx. Uses flash memory as per the standard ESP EEPROM library but reduces reflash - so reducing wear and improving commit() performance.

As actions on the flash need to stop the interrupts, an EEPROM reflash could noticably affect anything using PWM, etc.

Other libraries (not included with the IDE)

Libraries that don’t rely on low-level access to AVR registers should work well. Here are a few libraries that were verified to work:

	Adafruit_ILI9341 [https://github.com/Links2004/Adafruit_ILI9341] - Port of the Adafruit ILI9341 for the ESP8266

	arduinoVNC [https://github.com/Links2004/arduinoVNC] - VNC Client for Arduino

	arduinoWebSockets [https://github.com/Links2004/arduinoWebSockets] - WebSocket Server and Client compatible with ESP8266 (RFC6455)

	aREST [https://github.com/marcoschwartz/aREST] - REST API handler library.

	Blynk [https://github.com/blynkkk/blynk-library] - easy IoT framework for Makers (check out the Kickstarter page [https://tiny.cc/blynk-kick]).

	DallasTemperature [https://github.com/milesburton/Arduino-Temperature-Control-Library.git]

	DHT-sensor-library [https://github.com/adafruit/DHT-sensor-library] - Arduino library for the DHT11/DHT22 temperature and humidity sensors. Download latest v1.1.1 library and no changes are necessary. Older versions should initialize DHT as follows: DHT dht(DHTPIN, DHTTYPE, 15)

	DimSwitch [https://github.com/krzychb/DimSwitch] - Control electronic dimmable ballasts for fluorescent light tubes remotely as if using a wall switch.

	Encoder [https://github.com/PaulStoffregen/Encoder] - Arduino library for rotary encoders. Version 1.4 supports ESP8266.

	esp8266_mdns [https://github.com/mrdunk/esp8266_mdns] - mDNS queries and responses on esp8266. Or to describe it another way: An mDNS Client or Bonjour Client library for the esp8266.

	ESP-NOW [https://github.com/yoursunny/WifiEspNow] - Wrapper lib for ESP-NOW (See #2227 [https://github.com/esp8266/Arduino/issues/2227])

	ESPAsyncTCP [https://github.com/me-no-dev/ESPAsyncTCP] - Asynchronous TCP Library for ESP8266 and ESP32/31B

	ESPAsyncWebServer [https://github.com/me-no-dev/ESPAsyncWebServer] - Asynchronous Web Server Library for ESP8266 and ESP32/31B

	Homie for ESP8266 [https://github.com/marvinroger/homie-esp8266] - Arduino framework for ESP8266 implementing Homie, an MQTT convention for the IoT.

	NeoPixel [https://github.com/adafruit/Adafruit_NeoPixel] - Adafruit’s NeoPixel library, now with support for the ESP8266 (use version 1.0.2 or higher from Arduino’s library manager).

	NeoPixelBus [https://github.com/Makuna/NeoPixelBus] - Arduino NeoPixel library compatible with ESP8266. Use the “DmaDriven” or “UartDriven” branches for ESP8266. Includes HSL color support and more.

	PubSubClient [https://github.com/Imroy/pubsubclient] - MQTT library by @Imroy.

	RTC [https://github.com/Makuna/Rtc] - Arduino Library for Ds1307 & Ds3231 compatible with ESP8266.

	Souliss, Smart Home [https://github.com/souliss/souliss] - Framework for Smart Home based on Arduino, Android and openHAB.

	ST7735 [https://github.com/nzmichaelh/Adafruit-ST7735-Library] - Adafruit’s ST7735 library modified to be compatible with ESP8266. Just make sure to modify the pins in the examples as they are still AVR specific.

	Task [https://github.com/Makuna/Task] - Arduino Nonpreemptive multitasking library. While similiar to the included Ticker library in the functionality provided, this library was meant for cross Arduino compatibility.

	TickerScheduler [https://github.com/Toshik/TickerScheduler] - Library provides simple scheduler for Ticker to avoid WDT reset

	Teleinfo [https://github.com/hallard/LibTeleinfo] - Generic French Power Meter library to read Teleinfo energy monitoring data such as consuption, contract, power, period, … This library is cross platform, ESP8266, Arduino, Particle, and simple C++. French dedicated post [https://hallard.me/libteleinfo/] on author’s blog and all related information about Teleinfo [https://hallard.me/category/tinfo/] also available.

	UTFT-ESP8266 [https://github.com/gnulabis/UTFT-ESP8266] - UTFT display library with support for ESP8266. Only serial interface (SPI) displays are supported for now (no 8-bit parallel mode, etc). Also includes support for the hardware SPI controller of the ESP8266.

	WiFiManager [https://github.com/tzapu/WiFiManager] - WiFi Connection manager with web captive portal. If it can’t connect, it starts AP mode and a configuration portal so you can choose and enter WiFi credentials.

	OneWire [https://github.com/PaulStoffregen/OneWire] - Library for Dallas/Maxim 1-Wire Chips.

	Adafruit-PCD8544-Nokia-5110-LCD-Library [https://github.com/WereCatf/Adafruit-PCD8544-Nokia-5110-LCD-library] - Port of the Adafruit PCD8544 - library for the ESP8266.

	PCF8574_ESP [https://github.com/WereCatf/PCF8574_ESP] - A very simplistic library for using the PCF857//PCF8574A I2C 8-pin GPIO-expander.

	Dot Matrix Display Library 2 [https://github.com/freetronics/DMD2] - Freetronics DMD & Generic 16 x 32 P10 style Dot Matrix Display Library

	SdFat-beta [https://github.com/greiman/SdFat-beta] - SD-card library with support for long filenames, software- and hardware-based SPI and lots more.

	FastLED [https://github.com/FastLED/FastLED] - a library for easily & efficiently controlling a wide variety of LED chipsets, like the Neopixel (WS2812B), DotStar, LPD8806 and many more. Includes fading, gradient, color conversion functions.

	OLED [https://github.com/klarsys/esp8266-OLED] - a library for controlling I2C connected OLED displays. Tested with 0.96 inch OLED graphics display.

	MFRC522 [https://github.com/miguelbalboa/rfid] - A library for using the Mifare RC522 RFID-tag reader/writer.

	Ping [https://github.com/dancol90/ESP8266Ping] - lets the ESP8266 ping a remote machine.

	AsyncPing [https://github.com/akaJes/AsyncPing] - fully asynchronous Ping library (have full ping statistic and hardware MAC address).

Filesystem

Flash layout

Even though file system is stored on the same flash chip as the program,
programming new sketch will not modify file system contents. This allows
to use file system to store sketch data, configuration files, or content
for Web server.

The following diagram illustrates flash layout used in Arduino
environment:

|--------------|-------|---------------|--|--|--|--|--|
^ ^ ^ ^ ^
Sketch OTA update File system EEPROM WiFi config (SDK)

File system size depends on the flash chip size. Depending on the board
which is selected in IDE, you have the following options for flash size:

	Board

	Flash chip size, bytes

	File system size, bytes

	Generic module

	512k

	64k, 128k

	Generic module

	1M

	64k, 128k, 256k, 512k

	Generic module

	2M

	1M

	Generic module

	4M

	1M, 2M, 3M

	Adafruit HUZZAH

	4M

	1M, 2M, 3M

	ESPresso Lite 1.0

	4M

	1M, 2M, 3M

	ESPresso Lite 2.0

	4M

	1M, 2M, 3M

	NodeMCU 0.9

	4M

	1M, 2M, 3M

	NodeMCU 1.0

	4M

	1M, 2M, 3M

	Olimex MOD-WIFI-ESP8266(-DEV)

	2M

	1M

	SparkFun Thing

	512k

	64k

	SweetPea ESP-210

	4M

	1M, 2M, 3M

	WeMos D1 R1, R2 & mini

	4M

	1M, 2M, 3M

	ESPDuino

	4M

	1M, 2M, 3M

	WiFiduino

	4M

	1M, 2M, 3M

Note: to use any of file system functions in the sketch, add the
following include to the sketch:

#include "FS.h"

File system limitations

The filesystem implementation for ESP8266 had to accomodate the
constraints of the chip, among which its limited RAM.
SPIFFS [https://github.com/pellepl/spiffs] was selected because it
is designed for small systems, but that comes at the cost of some
simplifications and limitations.

First, behind the scenes, SPIFFS does not support directories, it just
stores a “flat” list of files. But contrary to traditional filesystems,
the slash character '/' is allowed in filenames, so the functions
that deal with directory listing (e.g. openDir("/website"))
basically just filter the filenames and keep the ones that start with
the requested prefix (/website/). Practically speaking, that makes
little difference though.

Second, there is a limit of 32 chars in total for filenames. One
'\0' char is reserved for C string termination, so that leaves us
with 31 usable characters.

Combined, that means it is advised to keep filenames short and not use
deeply nested directories, as the full path of each file (including
directories, '/' characters, base name, dot and extension) has to be
31 chars at a maximum. For example, the filename
/website/images/bird_thumbnail.jpg is 34 chars and will cause some
problems if used, for example in exists() or in case another file
starts with the same first 31 characters.

Warning: That limit is easily reached and if ignored, problems might
go unnoticed because no error message will appear at compilation nor
runtime.

For more details on the internals of SPIFFS implementation, see the
SPIFFS readme
file [https://github.com/esp8266/Arduino/blob/master/cores/esp8266/spiffs/README.md].

Uploading files to file system

ESP8266FS is a tool which integrates into the Arduino IDE. It adds a
menu item to Tools menu for uploading the contents of sketch data
directory into ESP8266 flash file system.

Warning: Due to the move from the obsolete esptool-ck.exe to the
supported esptool.py upload tool, upgraders from pre 2.5.1 will need to
update the ESP8266FS tool referenced below to 0.4.0 or later. Prior versions
will fail with a “esptool not found” error because they don’t know how to
use esptool.py.

	Download the tool: https://github.com/esp8266/arduino-esp8266fs-plugin/releases/download/0.4.0/ESP8266FS-0.4.0.zip

	In your Arduino sketchbook directory, create tools directory if
it doesn’t exist yet

	Unpack the tool into tools directory (the path will look like
<home_dir>/Arduino/tools/ESP8266FS/tool/esp8266fs.jar)
If upgrading, overwrite the existing JAR file with the newer version.

	Restart Arduino IDE

	Open a sketch (or create a new one and save it)

	Go to sketch directory (choose Sketch > Show Sketch Folder)

	Create a directory named data and any files you want in the file
system there

	Make sure you have selected a board, port, and closed Serial Monitor

	Select Tools > ESP8266 Sketch Data Upload. This should start
uploading the files into ESP8266 flash file system. When done, IDE
status bar will display SPIFFS Image Uploaded message.

File system object (SPIFFS)

setConfig

SPIFFSConfig cfg;
cfg.setAutoFormat(false);
SPIFFS.setConfig(cfg);

This method allows you to configure the parameters of a filesystem
before mounting. All filesystems have their own *Config (i.e.
SDFSConfig or SPIFFSConfig with their custom set of options.
All filesystems allow explicitly enabling/disabling formatting when
mounts fail. If you do not call this setConfig method before
perforing begin(), you will get the filesystem’s default
behavior and configuration. By default, SPIFFS will autoformat the
filesystem if it cannot mount it, while SDFS will not.

begin

SPIFFS.begin()

This method mounts SPIFFS file system. It must be called before any
other FS APIs are used. Returns true if file system was mounted
successfully, false otherwise. With no options it will format SPIFFS
if it is unable to mount it on the first try.

end

SPIFFS.end()

This method unmounts SPIFFS file system. Use this method before updating
SPIFFS using OTA.

format

SPIFFS.format()

Formats the file system. May be called either before or after calling
begin. Returns true if formatting was successful.

open

SPIFFS.open(path, mode)

Opens a file. path should be an absolute path starting with a slash
(e.g. /dir/filename.txt). mode is a string specifying access
mode. It can be one of “r”, “w”, “a”, “r+”, “w+”, “a+”. Meaning of these
modes is the same as for fopen C function.

r Open text file for reading. The stream is positioned at the
 beginning of the file.

r+ Open for reading and writing. The stream is positioned at the
 beginning of the file.

w Truncate file to zero length or create text file for writing.
 The stream is positioned at the beginning of the file.

w+ Open for reading and writing. The file is created if it does
 not exist, otherwise it is truncated. The stream is
 positioned at the beginning of the file.

a Open for appending (writing at end of file). The file is
 created if it does not exist. The stream is positioned at the
 end of the file.

a+ Open for reading and appending (writing at end of file). The
 file is created if it does not exist. The initial file
 position for reading is at the beginning of the file, but
 output is always appended to the end of the file.

Returns File object. To check whether the file was opened
successfully, use the boolean operator.

File f = SPIFFS.open("/f.txt", "w");
if (!f) {
 Serial.println("file open failed");
}

exists

SPIFFS.exists(path)

Returns true if a file with given path exists, false otherwise.

openDir

SPIFFS.openDir(path)

Opens a directory given its absolute path. Returns a Dir object.

remove

SPIFFS.remove(path)

Deletes the file given its absolute path. Returns true if file was
deleted successfully.

rename

SPIFFS.rename(pathFrom, pathTo)

Renames file from pathFrom to pathTo. Paths must be absolute.
Returns true if file was renamed successfully.

info

FSInfo fs_info;
SPIFFS.info(fs_info);

Fills FSInfo structure with
information about the file system. Returns true is successful,
false otherwise.

Filesystem information structure

struct FSInfo {
 size_t totalBytes;
 size_t usedBytes;
 size_t blockSize;
 size_t pageSize;
 size_t maxOpenFiles;
 size_t maxPathLength;
};

This is the structure which may be filled using FS::info method. -
totalBytes — total size of useful data on the file system -
usedBytes — number of bytes used by files - blockSize — SPIFFS
block size - pageSize — SPIFFS logical page size - maxOpenFiles
— max number of files which may be open simultaneously -
maxPathLength — max file name length (including one byte for zero
termination)

Directory object (Dir)

The purpose of Dir object is to iterate over files inside a directory.
It provides the methods: next(), fileName(), fileSize() , and
openFile(mode).

The following example shows how it should be used:

Dir dir = SPIFFS.openDir("/data");
while (dir.next()) {
 Serial.print(dir.fileName());
 if(dir.fileSize()) {
 File f = dir.openFile("r");
 Serial.println(f.size());
 }
}

next

Returns true while there are files in the directory to
iterate over. It must be called before calling fileName(), fileSize(),
and openFile() functions.

fileName

Returns the name of the current file pointed to
by the internal iterator.

fileSize

Returns the size of the current file pointed to
by the internal iterator.

openFile

This method takes mode argument which has the same meaning as
for SPIFFS.open() function.

File object

SPIFFS.open() and dir.openFile() functions return a File object.
This object supports all the functions of Stream, so you can use
readBytes, findUntil, parseInt, println, and all other
Stream methods.

There are also some functions which are specific to File object.

seek

file.seek(offset, mode)

This function behaves like fseek C function. Depending on the value
of mode, it moves current position in a file as follows:

	if mode is SeekSet, position is set to offset bytes from
the beginning.

	if mode is SeekCur, current position is moved by offset
bytes.

	if mode is SeekEnd, position is set to offset bytes from
the end of the file.

Returns true if position was set successfully.

position

file.position()

Returns the current position inside the file, in bytes.

size

file.size()

Returns file size, in bytes.

name

String name = file.name();

Returns file name, as const char*. Convert it to String for
storage.

close

file.close()

Close the file. No other operations should be performed on File object
after close function was called.

Guide to PROGMEM on ESP8266 and Arduino IDE

Intro

PROGMEM is a Arduino AVR feature that has been ported to ESP8266 to
ensure compatability with existing Arduino libraries, as well as, saving
RAM. On the esp8266 declaring a string such as const char * xyz =
"this is a string" will place this string in RAM, not flash. It is
possible to place a String into flash, and then load it into RAM when
it is needed. On an 8bit AVR this process is very simple. On the 32bit
ESP8266 there are conditions that must be met to read back from flash.

On the ESP8266 PROGMEM is a macro:

#define PROGMEM ICACHE_RODATA_ATTR

ICACHE_RODATA_ATTR is defined by:

#define ICACHE_RODATA_ATTR __attribute__((section(".irom.text")))

Which places the variable in the .irom.text section in flash. Placing strings in
flash requires using any of the methods above.

Declare a global string to be stored in flash.

static const char xyz[] PROGMEM = "This is a string stored in flash";

Declare a flash string within code block.

For this you can use the PSTR macro. Which are all defined in
pgmspace.h [https://github.com/esp8266/Arduino/blob/master/cores/esp8266/pgmspace.h]

#define PGM_P const char *
#define PGM_VOID_P const void *
#define PSTR(s) (__extension__({static const char __c[] PROGMEM = (s); &__c[0];}))

In practice:

void myfunction(void) {
PGM_P xyz = PSTR("Store this string in flash");
const char * abc = PSTR("Also Store this string in flash");
}

The two examples above will store these strings in flash. To retrieve
and manipulate flash strings they must be read from flash in 4byte words.
In the Arduino IDE for esp8266 there are several functions that can help
retrieve strings from flash that have been stored using PROGMEM. Both of
the examples above return const char *. However use of these pointers,
without correct 32bit alignment you will cause a segmentation fault and
the ESP8266 will crash. You must read from the flash 32 bit aligned.

Functions to read back from PROGMEM

Which are all defined in
pgmspace.h [https://github.com/esp8266/Arduino/blob/master/cores/esp8266/pgmspace.h]

int memcmp_P(const void* buf1, PGM_VOID_P buf2P, size_t size);
void* memccpy_P(void* dest, PGM_VOID_P src, int c, size_t count);
void* memmem_P(const void* buf, size_t bufSize, PGM_VOID_P findP, size_t findPSize);
void* memcpy_P(void* dest, PGM_VOID_P src, size_t count);
char* strncpy_P(char* dest, PGM_P src, size_t size);
char* strcpy_P(dest, src)
char* strncat_P(char* dest, PGM_P src, size_t size);
char* strcat_P(dest, src)
int strncmp_P(const char* str1, PGM_P str2P, size_t size);
int strcmp_P(str1, str2P)
int strncasecmp_P(const char* str1, PGM_P str2P, size_t size);
int strcasecmp_P(str1, str2P)
size_t strnlen_P(PGM_P s, size_t size);
size_t strlen_P(strP)
char* strstr_P(const char* haystack, PGM_P needle);
int printf_P(PGM_P formatP, ...);
int sprintf_P(char *str, PGM_P formatP, ...);
int snprintf_P(char *str, size_t strSize, PGM_P formatP, ...);
int vsnprintf_P(char *str, size_t strSize, PGM_P formatP, va_list ap);

There are a lot of functions there but in reality they are _P
versions of standard c functions that are adapted to read from the
esp8266 32bit aligned flash. All of them take a PGM_P which is
essentially a const char *. Under the hood these functions all use, a
process to ensure that 4 bytes are read, and the request byte is returned.

This works well when you have designed a function as above that is
specialised for dealing with PROGMEM pointers but there is no type
checking except against const char *. This means that it is totally
legitimate, as far as the compiler is concerned, for you to pass it any
const char * string, which is obviously not true and will lead to
undefined behaviour. This makes it impossible to create any overloaded
functions that can use flash strings when they are defined as PGM_P.
If you try you will get an ambiguous overload error as PGM_P ==
const char *.

Enter the __FlashStringHelper… This is a wrapper class that allows flash
strings to be used as a class, this means that type checking and function
overloading can be used with flash strings. Most people will be familiar with
the F() macro and possibly the FPSTR() macro. These are defined in WString.h [https://github.com/esp8266/Arduino/blob/master/cores/esp8266/WString.h#L37]:

#define FPSTR(pstr_pointer) (reinterpret_cast<const __FlashStringHelper *>(pstr_pointer))
#define F(string_literal) (FPSTR(PSTR(string_literal)))

So FSPTR() takes a PROGMEM pointer to a string and casts it to this
__FlashStringHelper class. Thus if you have defined a string as
above xyz you can use FPSTR() to convert it to
__FlashStringHelper for passing into functions that take it.

static const char xyz[] PROGMEM = "This is a string stored in flash";
Serial.println(FPSTR(xyz));

The F() combines both of these methods to create an easy and quick
way to store an inline string in flash, and return the type
__FlashStringHelper. For example:

Serial.println(F("This is a string stored in flash"));

Although these two functions provide a similar function, they serve
different roles. FPSTR() allows you to define a global flash string
and then use it in any function that takes __FlashStringHelper.
F() allows you to define these flash strings in place, but you can’t
use them anywhere else. The consequence of this is sharing common
strings is possible using FPSTR() but not F().
__FlashStringHelper is what the String class uses to overload its
constructor:

String(const char *cstr = ""); // constructor from const char *
String(const String &str); // copy constructor
String(const __FlashStringHelper *str); // constructor for flash strings

This allows you to write:

String mystring(F("This string is stored in flash"));

How do I write a function to use __FlashStringHelper? Simples: cast the pointer back to a PGM_P and use the _P functions shown above. This an example implementation for String for the concat function.

unsigned char String::concat(const __FlashStringHelper * str) {
 if (!str) return 0; // return if the pointer is void
 int length = strlen_P((PGM_P)str); // cast it to PGM_P, which is basically const char *, and measure it using the _P version of strlen.
 if (length == 0) return 1;
 unsigned int newlen = len + length;
 if (!reserve(newlen)) return 0; // create a buffer of the correct length
 strcpy_P(buffer + len, (PGM_P)str); //copy the string in using strcpy_P
 len = newlen;
 return 1;
}

How do I declare a global flash string and use it?

static const char xyz[] PROGMEM = "This is a string stored in flash. Len = %u";

void setup() {
 Serial.begin(115200); Serial.println();
 Serial.println(FPSTR(xyz)); // just prints the string, must convert it to FlashStringHelper first using FPSTR().
 Serial.printf_P(xyz, strlen_P(xyz)); // use printf with PROGMEM string
}

How do I use inline flash strings?

void setup() {
 Serial.begin(115200); Serial.println();
 Serial.println(F("This is an inline string")); //
 Serial.printf_P(PSTR("This is an inline string using printf %s"), "hello");
}

How do I declare and use data in PROGMEM?

const size_t len_xyz = 30;
const uint8_t xyz[] PROGMEM = {
 0x53, 0x61, 0x79, 0x20, 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20,
 0x74, 0x6f, 0x20, 0x4d, 0x79, 0x20, 0x4c, 0x69, 0x74, 0x74,
 0x6c, 0x65, 0x20, 0x46, 0x72, 0x69, 0x65, 0x6e, 0x64, 0x00};

 void setup() {
 Serial.begin(115200); Serial.println();
 uint8_t * buf = new uint8_t[len_xyz];
 if (buf) {
 memcpy_P(buf, xyz, len_xyz);
 Serial.write(buf, len_xyz); // output the buffer.
 }
 }

How do I declare some data in PROGMEM, and retrieve one byte from it.

Declare the data as done previously, then use pgm_read_byte to get
the value back.

const size_t len_xyz = 30;
const uint8_t xyz[] PROGMEM = {
 0x53, 0x61, 0x79, 0x20, 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20,
 0x74, 0x6f, 0x20, 0x4d, 0x79, 0x20, 0x4c, 0x69, 0x74, 0x74,
 0x6c, 0x65, 0x20, 0x46, 0x72, 0x69, 0x65, 0x6e, 0x64, 0x00
};

void setup() {
 Serial.begin(115200); Serial.println();
 for (int i = 0; i < len_xyz; i++) {
 uint8_t byteval = pgm_read_byte(xyz + i);
 Serial.write(byteval); // output the buffer.
 }
}

In summary

It is easy to store strings in flash using PROGMEM and PSTR but
you have to create functions that specifically use the pointers they
generate as they are basically const char *. On the other hand
FPSTR and F() give you a class that you can do implicit
conversions from, very useful when overloading functions, and doing
implicit type conversions. It is worth adding that if you wish to store
an int, float or pointer these can be stored and read back
directly as they are 4 bytes in size and therefor will be always
aligned!

Hope this helps.

Using GDB to Debug Applications

ESP applications can be debugged using GDB, the GNU debugger, which is
included with the standard IDE installation. This note will only discuss
the ESP specific steps, so please refer to the
main GNU GDB documentation.

Note that as of 2.5.0, the toolchain moved from the ESPRESSIF patched,
closed-source version of GDB to the main GNU version. The debugging
formats are different, so please be sure to use only the latest Arduino
toolchain GDB executable.

CLI and IDE Note

Because the Arduino IDE doesn’t support interactive debugging, the following
sections describe debugging using the command line. Other IDEs which use
GDB in their debug backends should work identically, but you may need to
edit their configuration files or options to enable the remote serial
debugging required and to set the standard options. PRs are happily
accepted for updates to this document with additional IDEs!

Preparing your application for GDB

Applications need to be changed to enable GDB debugging support. This
change will add 2-3KB of flash and around 700 bytes of IRAM usage, but
should not affect operation of the application.

In your main sketch.ino file, add the following line to the top of
the application:

#include <GDBStub.h>

And in the void setup() function ensure the serial port is initialized
and call gdbstub_init():

Serial.begin(115200);
gdbstub_init();

Rebuild and reupload your application and it should run exactly as before.

Starting a Debug Session

Once your application is running, the process to attach a debugger is
quite simple:
. Close the Arduino Serial Monitor
. Locate Application.ino.elf File
. Open a Command Prompt and Start GDB
. Apply the GDB configurations
. Attach the Debugger
. Debug Away!

Close the Arduino Serial Monitor

Because GDB needs full control of the serial port, you will need to close
any Arduino Serial Monitor windows you may have open. Otherwise GDB will
report an error while attempting to debug.

Locate Application.ino.elf File

In order for GDB to debug your application, you need to locate the compiled
ELF format version of it (which includes needed debug symbols).

Under Linux these files are stored in /tmp/arduino_build_* and the following command will help locate the right file for your app:

find /tmp -name "*.elf" -print

Under Windows these files are stored in %userprofile%\AppData\Local\Temp\arduino_build_* and the following command will help locate the right file for your app:

dir %userprofile%\appdata*.elf /s/b

Note the full path of ELF file that corresponds to your sketch name, it will
be needed later once GDB is started.

Open a Command Prompt and Start GDB

Open a terminal or CMD prompt and navigate to the proper ESP8266 toolchain
directory.

Linux

~/.arduino15/packages/esp8266/hardware/xtensa-lx106-elf/bin/xtensa-lx106-elf-gdb

Windows (Using Board Manager version)

%userprofile%\AppData\Local\Arduino15\packages\esp8266\tools\xtensa-lx106-elf-gcc\2.5.0-3-20ed2b9\bin\xtensa-lx106-elf-gdb.exe

Windows (Using Git version)

%userprofile%\Documents\Arduino\hardware\esp8266com\esp8266\tools\xtensa-lx106-elf\bin\xtensa-lx106-elf-gdb.exe

Please note the proper GDB name is “xtensa-lx106-elf-gdb”. If you accidentally
run “gdb” you may start your own operating system’s GDB, which will not know how
to talk to the ESP8266.

Apply the GDB Configurations

At the (gdb) prompt, enter the following options to configure GDB for the
ESP8266 memory map and configuration:

set remote hardware-breakpoint-limit 1
set remote hardware-watchpoint-limit 1
set remote interrupt-on-connect on
set remote kill-packet off
set remote symbol-lookup-packet off
set remote verbose-resume-packet off
mem 0x20000000 0x3fefffff ro cache
mem 0x3ff00000 0x3fffffff rw
mem 0x40000000 0x400fffff ro cache
mem 0x40100000 0x4013ffff rw cache
mem 0x40140000 0x5fffffff ro cache
mem 0x60000000 0x60001fff rw
set serial baud 115200

Now tell GDB where your compiled ELF file is located:

file /tmp/arduino_build_257110/sketch_dec26a.ino.elf

Attach the Debugger

Once GDB has been configured properly and loaded your debugging symbols, connect
it to the ESP with the command (replace the ttyUSB0 or COM9 with your ESP’s serial
port):

target remote /dev/ttyUSB0

or

target remote \\.\COM9

At this point GDB will send a stop the application on the ESP8266 and you can
begin setting a breakpoint (break loop) or any other debugging operation.

Example Debugging Session

Create a new sketch and paste the following code into it:

#include <GDBStub.h>

void setup() {
 Serial.begin(115200);
 gdbstub_init();
 Serial.printf("Starting...\n");
}

void loop() {
 static uint32_t cnt = 0;
 Serial.printf("%d\n", cnt++);
 delay(100);
}

Save it and then build and upload to your ESP8266. On the Serial monitor you
should see something like

1
2
3
....

Now close the Serial Monitor.

Open a command prompt and find the ELF file:

earle@server:~$ find /tmp -name "*.elf" -print
/tmp/arduino_build_257110/testgdb.ino.elf
/tmp/arduino_build_531411/listfiles.ino.elf
/tmp/arduino_build_156712/SDWebServer.ino.elf

In this example there are multiple elf files found, but we only care about
the one we just built, testgdb.ino.elf.

Open up the proper ESP8266-specific GDB

earle@server:~$ ~/.arduino15/packages/esp8266/hardware/xtensa-lx106-elf/bin/xtensa-lx106-elf-gdb
GNU gdb (GDB) 8.2.50.20180723-git
Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <https://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "--host=x86_64-linux-gnu --target=xtensa-lx106-elf".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
 <https://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
 <https://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word".
(gdb)

We’re now at the GDB prompt, but nothing has been set up for the ESP8266
and no debug information has been loaded. Cut-and-paste the setup options:

(gdb) set remote hardware-breakpoint-limit 1
(gdb) set remote hardware-watchpoint-limit 1
(gdb) set remote interrupt-on-connect on
(gdb) set remote kill-packet off
(gdb) set remote symbol-lookup-packet off
(gdb) set remote verbose-resume-packet off
(gdb) mem 0x20000000 0x3fefffff ro cache
(gdb) mem 0x3ff00000 0x3fffffff rw
(gdb) mem 0x40000000 0x400fffff ro cache
(gdb) mem 0x40100000 0x4013ffff rw cache
(gdb) mem 0x40140000 0x5fffffff ro cache
(gdb) mem 0x60000000 0x60001fff rw
(gdb) set serial baud 115200
(gdb)

And tell GDB where the debugging info ELF file is located:

(gdb) file /tmp/arduino_build_257110/testgdb.ino.elf
Reading symbols from /tmp/arduino_build_257110/testgdb.ino.elf...done.

Now, connect to the running ESP8266:

(gdb) target remote /dev/ttyUSB0
Remote debugging using /dev/ttyUSB0
0x40000f68 in ?? ()
(gdb)

Don’t worry that GDB doesn’t know what is at our present address, we broke
into the code at a random spot and we could be in an interrupt, in the
ROM, or elsewhere. The important bit is that we’re now connected and
two things will now happen: we can debug, and the app’s regular serial
output will be displayed on the GDB console..

Continue the running app to see the serial output:

(gdb) cont
Continuing.
74
75
76
77
...

The app is back running and we can stop it at any time using Ctrl-C:

113
^C
Program received signal SIGINT, Interrupt.
0x40000f68 in ?? ()
(gdb)

At this point we can set a breakpoint on the main loop() and restart
to get into our own code:

(gdb) break loop
Breakpoint 1 at 0x40202e33: file /home/earle/Arduino/sketch_dec26a/sketch_dec26a.ino, line 10.
(gdb) cont
Continuing.
Note: automatically using hardware breakpoints for read-only addresses.
bcn_timout,ap_probe_send_start

Breakpoint 1, loop () at /home/earle/Arduino/sketch_dec26a/sketch_dec26a.ino:10
10 void loop()
(gdb)

Let’s examine the local variable:

(gdb) next
loop () at /home/earle/Arduino/sketch_dec26a/sketch_dec26a.ino:13
13 Serial.printf("%d\n", cnt++);
(gdb) print cnt
$1 = 114
(gdb)

And change it:

$2 = 114
(gdb) set cnt = 2000
(gdb) print cnt
$3 = 2000
(gdb)

And restart the app and see our changes take effect:

(gdb) cont
Continuing.
2000
Breakpoint 1, loop () at /home/earle/Arduino/sketch_dec26a/sketch_dec26a.ino:10
10 void loop() {
(gdb) cont
Continuing.
2001
Breakpoint 1, loop () at /home/earle/Arduino/sketch_dec26a/sketch_dec26a.ino:10
10 void loop() {
(gdb)

Looks like we left the breakpoint on loop(), let’s get rid of it and try again:

(gdb) delete
Delete all breakpoints? (y or n) y
(gdb) cont
Continuing.
2002
2003
2004
2005
2006
....

At this point we can exit GDB with quit or do further debugging.

ESP8266 Hardware Debugging Limitations

The ESP8266 only supports a single hardware breakpoint and a single
hardware data watchpoint. This means only one breakpoint in user code
is allowed at any time. Consider using the thb (temporary hardware
breakpoint) command in GDB while debugging instead of the more common
break command, since thb will remove the breakpoint once it is
reached automatically and save you some trouble.

Boards

Generic ESP8266 Module

These modules come in different form factors and pinouts. See the page at ESP8266 community wiki for more info: ESP8266 Module Family [http://www.esp8266.com/wiki/doku.php?id=esp8266-module-family].

Usually these modules have no bootstapping resistors on board, insufficient decoupling capacitors, no voltage regulator, no reset circuit, and no USB-serial adapter. This makes using them somewhat tricky, compared to development boards which add these features.

In order to use these modules, make sure to observe the following:

	Provide sufficient power to the module. For stable use of the ESP8266 a power supply with 3.3V and >= 250mA is required. Using the power available from USB to Serial adapter is not recommended, these adapters typically do not supply enough current to run ESP8266 reliably in every situation. An external supply or regulator alongwith filtering capacitors is preferred.

	Connect bootstapping resistors to GPIO0, GPIO2, GPIO15 according to the schematics below.

	Put ESP8266 into bootloader mode before uploading code.

Serial Adapter

There are many different USB to Serial adapters / boards. To be able to put ESP8266 into bootloader mode using serial handshaking lines, you need the adapter which breaks out RTS and DTR outputs. CTS and DSR are not useful for upload (they are inputs). Make sure the adapter can work with 3.3V IO voltage: it should have a jumper or a switch to select between 5V and 3.3V, or be marked as 3.3V only.

Adapters based around the following ICs should work:

	FT232RL

	CP2102

	CH340G

PL2303-based adapters are known not to work on Mac OS X. See https://github.com/igrr/esptool-ck/issues/9 for more info.

Minimal Hardware Setup for Bootloading and Usage

	PIN

	Resistor

	Serial Adapter

	VCC

	
	VCC (3.3V)

	GND

	
	GND

	TX or GPIO2*

	
	RX

	RX

	
	TX

	GPIO0

	PullUp

	DTR

	Reset*

	PullUp

	RTS

	GPIO15*

	PullDown

	

	CH_PD

	PullUp

	

	Note

	GPIO15 is also named MTDO

	Reset is also named RSBT or REST (adding PullUp improves the
stability of the module)

	GPIO2 is alternative TX for the boot loader mode

	Directly connecting a pin to VCC or GND is not a substitute for a
PullUp or PullDown resistor, doing this can break upload management
and the serial console, instability has also been noted in some
cases.

ESP to Serial

[image: ESP to Serial]
ESP to Serial

Minimal Hardware Setup for Bootloading only

ESPxx Hardware

	PIN

	Resistor

	Serial Adapter

	VCC

	
	VCC (3.3V)

	GND

	
	GND

	TX or GPIO2

	
	RX

	RX

	
	TX

	GPIO0

	
	GND

	Reset

	
	RTS*

	GPIO15

	PullDown

	

	CH_PD

	PullUp

	

	Note

	if no RTS is used a manual power toggle is needed

Minimal Hardware Setup for Running only

ESPxx Hardware

	PIN

	Resistor

	Power supply

	VCC

	
	VCC (3.3V)

	GND

	
	GND

	GPIO0

	PullUp

	

	GPIO15

	PullDown

	

	CH_PD

	PullUp

	

Minimal

[image: ESP min]
ESP min

Improved Stability

[image: ESP improved stability]
ESP improved stability

Boot Messages and Modes

The ESP module checks at every boot the Pins 0, 2 and 15. based on them its boots in different modes:

	GPIO15

	GPIO0

	GPIO2

	Mode

	0V

	0V

	3.3V

	Uart Bootloader

	0V

	3.3V

	3.3V

	Boot sketch (SPI flash)

	3.3V

	x

	x

	SDIO mode (not used for Arduino)

at startup the ESP prints out the current boot mode example:

rst cause:2, boot mode:(3,6)

note: - GPIO2 is used as TX output and the internal Pullup is enabled on boot.

rst cause

	Number

	Description

	0

	unknown

	1

	normal boot

	2

	reset pin

	3

	software reset

	4

	watchdog reset

boot mode

the first value respects the pin setup of the Pins 0, 2 and 15.

	Number

	GPIO15

	GPIO0

	GPIO2

	Mode

	0

	0V

	0V

	0V

	Not valid

	1

	0V

	0V

	3.3V

	Uart

	2

	0V

	3.3V

	0V

	Not valid

	3

	0V

	3.3V

	3.3V

	Flash

	4

	3.3V

	0V

	0V

	SDIO

	5

	3.3V

	0V

	3.3V

	SDIO

	6

	3.3V

	3.3V

	0V

	SDIO

	7

	3.3V

	3.3V

	3.3V

	SDIO

note: - number = ((GPIO15 << 2) | (GPIO0 << 1) | GPIO2);

Generic ESP8285 Module

ESP8285 (datasheet [http://www.espressif.com/sites/default/files/0a-esp8285_datasheet_en_v1.0_20160422.pdf]) is a multi-chip package which contains ESP8266 and 1MB flash. All points related to bootstrapping resistors and recommended circuits listed above apply to ESP8285 as well.

Note that since ESP8285 has SPI flash memory internally connected in DOUT mode, pins 9 and 10 may be used as GPIO / I2C / PWM pins.

ESPDuino (ESP-13 Module)

TODO

Adafruit Feather HUZZAH ESP8266

The Adafruit Feather HUZZAH ESP8266 is an Arduino-compatible Wi-Fi development board powered by Ai-Thinker’s ESP-12S, clocked at 80 MHz at 3.3V logic. A high-quality SiLabs CP2104 USB-Serial chip is included so that you can upload code at a blistering 921600 baud for fast development time. It also has auto-reset so no noodling with pins and reset button pressings. A 3.7V Lithium polymer battery connector is included, making it ideal for portable projects. The Adafruit Feather HUZZAH ESP8266 will automatically recharge a connected battery when USB power is available.

Product page: https://www.adafruit.com/product/2821

Invent One

The Invent One is an Arduino-compatible Wi-Fi development board powered by Ai-Thinker’s ESP-12F, clocked at 80 MHz at 3.3V logic. It has an onboard ADC (PCF8591) so that you can have multiple analog inputs to work with. More information can be found here: https://blog.inventone.ng

Product page: https://inventone.ng

XinaBox CW01

The XinaBox CW01(ESP8266) is an Arduino-compatible Wi-Fi development board powered by an ESP-12F, clocked at 80 MHz at 3.3V logic. The CW01 has an onboard RGB LED and 3 xBUS connection ports.

Product page: https://xinabox.cc/products/CW01

ESPresso Lite 1.0

ESPresso Lite 1.0 (beta version) is an Arduino-compatible Wi-Fi development board powered by Espressif System’s own ESP8266 WROOM-02 module. It has breadboard-friendly breakout pins with in-built LED, two reset/flash buttons and a user programmable button . The operating voltage is 3.3VDC, regulated with 800mA maximum current. Special distinctive features include on-board I2C pads that allow direct connection to OLED LCD and sensor boards.

ESPresso Lite 2.0

ESPresso Lite 2.0 is an Arduino-compatible Wi-Fi development board based on an earlier V1 (beta version). Re-designed together with Cytron Technologies, the newly-revised ESPresso Lite V2.0 features the auto-load/auto-program function, eliminating the previous need to reset the board manually before flashing a new program. It also feature two user programmable side buttons and a reset button. The special distinctive features of on-board pads for I2C sensor and actuator is retained.

Phoenix 1.0

Product page: http://www.espert.co

Phoenix 2.0

Product page: http://www.espert.co

NodeMCU 0.9 (ESP-12 Module)

Pin mapping

Pin numbers written on the board itself do not correspond to ESP8266 GPIO pin numbers. Constants are defined to make using this board easier:

static const uint8_t D0 = 16;
static const uint8_t D1 = 5;
static const uint8_t D2 = 4;
static const uint8_t D3 = 0;
static const uint8_t D4 = 2;
static const uint8_t D5 = 14;
static const uint8_t D6 = 12;
static const uint8_t D7 = 13;
static const uint8_t D8 = 15;
static const uint8_t D9 = 3;
static const uint8_t D10 = 1;

If you want to use NodeMCU pin 5, use D5 for pin number, and it will be translated to ‘real’ GPIO pin 14.

NodeMCU 1.0 (ESP-12E Module)

This module is sold under many names for around $6.50 on AliExpress and it’s one of the cheapest, fully integrated ESP8266 solutions.

It’s an open hardware design with an ESP-12E core and 4 MB of SPI flash.

According to the manufacturer, “with a micro USB cable, you can connect NodeMCU devkit to your laptop and flash it without any trouble”. This is more or less true: the board comes with a CP2102 onboard USB to serial adapter which just works, well, the majority of the time. Sometimes flashing fails and you have to reset the board by holding down FLASH +
RST, then releasing FLASH, then releasing RST. This forces the CP2102 device to power cycle and to be re-numbered by Linux.

The board also features a NCP1117 voltage regulator, a blue LED on GPIO16 and a 220k/100k Ohm voltage divider on the ADC input pin.
The ESP-12E usually has a led connected on GPIO2.

Full pinout and PDF schematics can be found here [https://github.com/nodemcu/nodemcu-devkit-v1.0]

Olimex MOD-WIFI-ESP8266(-DEV)

This board comes with 2 MB of SPI flash and optional accessories (e.g. evaluation board ESP8266-EVB or BAT-BOX for batteries).

The basic module has three solder jumpers that allow you to switch the operating mode between SDIO, UART and FLASH.

The board is shipped for FLASH operation mode, with jumpers TD0JP=0, IO0JP=1, IO2JP=1.

Since jumper IO0JP is tied to GPIO0, which is PIN 21, you’ll have to ground it before programming with a USB to serial adapter and reset the board by power cycling it.

UART pins for programming and serial I/O are GPIO1 (TXD, pin 3) and GPIO3 (RXD, pin 4).

You can find the board schematics here [https://github.com/OLIMEX/ESP8266/blob/master/HARDWARE/MOD-WIFI-ESP8266-DEV/MOD-WIFI-ESP8266-DEV_schematic.pdf]

SparkFun ESP8266 Thing

Product page: https://www.sparkfun.com/products/13231

SparkFun ESP8266 Thing Dev

Product page: https://www.sparkfun.com/products/13711

SweetPea ESP-210

TODO

LOLIN(WEMOS) D1 R2 & mini

Product page: https://www.wemos.cc/

LOLIN(WEMOS) D1 mini Pro

Product page: https://www.wemos.cc/

LOLIN(WEMOS) D1 mini Lite

Parameters in Arduino IDE:

	Card: “WEMOS D1 Mini Lite”

	Flash Size: “1M (512K SPIFFS)”

	CPU Frequency: “80 Mhz”

	Upload Speed: “230400”

Power:

	5V pin : 4.7V 500mA output when the board is powered by USB ; 3.5V-6V input

	3V3 pin : 3.3V 500mA regulated output

	Digital pins : 3.3V 30mA.

links:

	Product page: https://www.wemos.cc/

	Board schematic: https://wiki.wemos.cc/_media/products:d1:sch_d1_mini_lite_v1.0.0.pdf

	ESP8285 datasheet: https://www.espressif.com/sites/default/files/0a-esp8285_datasheet_en_v1.0_20160422.pdf

	Voltage regulator datasheet: http://pdf-datasheet.datasheet.netdna-cdn.com/pdf-down/M/E/6/ME6211-Microne.pdf

WeMos D1 R1

Product page: https://www.wemos.cc/

ESPino (ESP-12 Module)

ESPino integrates the ESP-12 module with a 3.3v regulator, CP2104 USB-Serial bridge and a micro USB connector for easy programming. It is designed for fitting in a breadboard and has an RGB Led and two buttons for easy prototyping.

For more information about the hardware, pinout diagram and programming procedures, please see the datasheet [https://github.com/makerlabmx/ESPino-tools/raw/master/Docs/ESPino-Datasheet-EN.pdf].

Product page: http://www.espino.io/en

ThaiEasyElec’s ESPino

ESPino by ThaiEasyElec using WROOM-02 module from Espressif Systems with 4 MB Flash.

We will update an English description soon. - Product page:
http://thaieasyelec.com/products/wireless-modules/wifi-modules/espino-wifi-development-board-detail.html
- Schematics:
www.thaieasyelec.com/downloads/ETEE052/ETEE052_ESPino_Schematic.pdf -
Dimensions:
http://thaieasyelec.com/downloads/ETEE052/ETEE052_ESPino_Dimension.pdf
- Pinouts:
http://thaieasyelec.com/downloads/ETEE052/ETEE052_ESPino_User_Manual_TH_v1_0_20160204.pdf (Please see pg. 8)

WifInfo

WifInfo integrates the ESP-12 or ESP-07+Ext antenna module with a 3.3v regulator and the hardware to be able to measure French telemetry issue from ERDF powering meter serial output. It has a USB connector for powering, an RGB WS2812 Led, 4 pins I2C connector to fit OLED or sensor, and two buttons + FTDI connector and auto reset feature.

For more information, please see WifInfo related blog [http://hallard.me/category/wifinfo/] entries, github [https://github.com/hallard/WifInfo] and community [https://community.hallard.me/category/16/wifinfo] forum.

Arduino

TODO

4D Systems gen4 IoD Range

gen4-IoD Range of ESP8266 powered Display Modules by 4D Systems.

2.4”, 2.8” and 3.2” TFT LCD with uSD card socket and Resistive Touch. Chip Antenna + uFL Connector.

Datasheet and associated downloads can be found on the 4D Systems product page.

The gen4-IoD range can be programmed using the Arduino IDE and also the 4D Systems Workshop4 IDE, which incorporates many additional graphics benefits. GFX4d library is available, along with a number of demo applications.

	Product page: http://www.4dsystems.com.au/product/gen4-IoD

Digistump Oak

The Oak requires an Serial Adapter for a serial connection or flashing; its micro USB port is only for power.

To make a serial connection, wire the adapter’s TX to P3, RX to P4, and GND to GND. Supply 3.3v from the serial adapter if not already powered via USB.

To put the board into bootloader mode, configure a serial connection as above, connect P2 to GND, then re-apply power. Once flashing is complete, remove the connection from P2 to GND, then re-apply power to boot into normal mode.

WiFiduino

Product page: https://wifiduino.com/esp8266

Amperka WiFi Slot

Product page: http://wiki.amperka.ru/wifi-slot

Seeed Wio Link

Wio Link is designed to simplify your IoT development. It is an ESP8266 based open-source Wi-Fi development board to create IoT applications by virtualizing plug-n-play modules to RESTful APIs with mobile APPs. Wio Link is also compatible with the Arduino IDE.

Please DO NOTICE that you MUST pull up pin 15 to enable the power for Grove ports, the board is designed like this for the purpose of peripherals power management.

Product page: https://www.seeedstudio.com/Wio-Link-p-2604.html

ESPectro Core

ESPectro Core is ESP8266 development board as the culmination of our 3+ year experience in exploring and developing products with ESP8266 MCU.

Initially designed for kids in mind, everybody should be able to use it. Yet it’s still hacker-friendly as we break out all ESP8266 ESP-12F pins.

More details at https://shop.makestro.com/product/espectrocore/

Exception Causes (EXCCAUSE)

	EXCCAUSE
Code

	Cause Name

	Cause Description

	Required
Option

	EXCVADDR
Loaded

	0

	IllegalInstructionCause

	Illegal instruction

	Exception

	No

	1

	SyscallCause

	SYSCALL instruction

	Exception

	No

	2

	InstructionFetchErrorCause

	Processor internal physical address or
data error during instruction fetch

	Exception

	Yes

	3

	LoadStoreErrorCause

	Processor internal physical address or
data error during load or store

	Exception

	Yes

	4

	Level1InterruptCause

	Level-1 interrupt as indicated by set
level-1 bits in the INTERRUPT register

	Interrupt

	No

	5

	AllocaCause

	MOVSP instruction, if caller’s
registers are not in the register file

	Windowed
Register

	No

	6

	IntegerDivideByZeroCause

	QUOS, QUOU, REMS, or REMU divisor
operand is zero

	32-bit
Integer
Divide

	No

	7

	Reserved for Tensilica

	
	
	

	8

	PrivilegedCause

	Attempt to execute a privileged
operation when CRING != 0

	MMU

	No

	9

	LoadStoreAlignmentCause

	Load or store to an unaligned address

	Unaligned
Exception

	Yes

	10..11

	Reserved for Tensilica

	
	
	

	12

	InstrPIFDateErrorCause

	PIF data error during instruction fetch

	Processor
Interface

	Yes

	13

	LoadStorePIFDataErrorCause

	Synchronous PIF data error during
LoadStore access

	Processor
Interface

	Yes

	14

	InstrPIFAddrErrorCause

	PIF address error during instruction
fetch

	Processor
Interface

	Yes

	15

	LoadStorePIFAddrErrorCause

	Synchronous PIF address error during
LoadStore access

	Processor
Interface

	Yes

	16

	InstTLBMissCause

	Error during Instruction TLB refill

	MMU

	Yes

	17

	InstTLBMultiHitCause

	Multiple instruction TLB entries
matched

	MMU

	Yes

	18

	InstFetchPrivilegeCause

	An instruction fetch referenced a
virtual address at a ring level less
than CRING

	MMU

	Yes

	19

	Reserved for Tensilica

	
	
	

	20

	InstFetchProhibitedCause

	An instruction fetch referenced a page
mapped with an attribute that does not
permit instruction fetch

	Region
Protection
or MMU

	Yes

	21..23

	Reserved for Tensilica

	
	
	

	24

	LoadStoreTLBMissCause

	Error during TLB refill for a load or
store

	MMU

	Yes

	25

	LoadStoreTLBMultiHitCause

	Multiple TLB entries matched for a load
or store

	MMU

	Yes

	26

	LoadStorePrivilegeCause

	A load or store referenced a virtual
address at a ring level less than CRING

	MMU

	Yes

	27

	Reserved for Tensilica

	
	
	

	28

	LoadProhibitedCause

	A load referenced a page mapped with an
attribute that does not permit loads

	Region
Protection
or MMU

	Yes

	29

	StoreProhibitedCause

	A store referenced a page mapped with
an attribute that does not permit

	Region
Protection
or MMU

	Yes

	30..31

	Reserved for Tensilica

	
	
	

	32..39

	CoprocessornDisabled

	Coprocessor n instruction when cpn
disabled. n varies 0..7 as the cause
varies 32..39

	Coprocessor

	No

	40..63

	Reserved

	
	
	

Infos from Xtensa Instruction Set Architecture (ISA) Reference Manual

Debugging

Introduction

Since 2.1.0-rc1 the core includes a Debugging feature that is
controllable over the IDE menu.

The new menu points manage the real-time Debug messages.

Requirements

For usage of the debugging a Serial connection is required (Serial or
Serial1).

The Serial Interface need to be initialized in the setup().

Set the Serial baud rate as high as possible for your Hardware setup.

Minimum sketch to use debugging:

void setup() {
 Serial.begin(115200);
}

void loop() {
}

Usage

	Select the Serial interface for the Debugging messages: [image: Debug-Port]

	Select which type / level you want debug messages for: [image: Debug-Level]

	Check if the Serial interface is initialized in setup() (see
Requirements)

	Flash sketch

	Check the Serial Output

Informations

It work with every sketch that enables the Serial interface that is
selected as debug port.

The Serial interface can still be used normal in the Sketch.

The debug output is additional and will not disable any interface from
usage in the sketch.

For Developers

For the debug handling uses defines.

The defined are set by command line.

Debug Port

The port has the define DEBUG_ESP_PORT possible value: - Disabled:
define not existing - Serial: Serial - Serial1: Serial1

Debug Level

All defines for the different levels starts with DEBUG_ESP_

a full list can be found here in the
boards.txt [https://github.com/esp8266/Arduino/blob/master/tools/boards.txt.py#L1045-L1047]

Example for own debug messages

The debug messages will be only shown when the Debug Port in the IDE
menu is set.

#ifdef DEBUG_ESP_PORT
#define DEBUG_MSG(...) DEBUG_ESP_PORT.printf(__VA_ARGS__)
#else
#define DEBUG_MSG(...)
#endif

void setup() {
 Serial.begin(115200);

 delay(3000);
 DEBUG_MSG("bootup...\n");
}

void loop() {
 DEBUG_MSG("loop %d\n", millis());
 delay(1000);
}

Stack Dumps

Introduction

If the ESP crashes the Exception Cause will be shown and the current stack will be dumped.

Example:

Exception (0): epc1=0x402103f4 epc2=0x00000000 epc3=0x00000000 excvaddr=0x00000000 depc=0x00000000

ctx: sys
sp: 3ffffc10 end: 3fffffb0 offset: 01a0

>>>stack>>>
3ffffdb0: 40223e00 3fff6f50 00000010 60000600
3ffffdc0: 00000001 4021f774 3fffc250 4000050c
3ffffdd0: 400043d5 00000030 00000016 ffffffff
3ffffde0: 400044ab 3fffc718 3ffffed0 08000000
3ffffdf0: 60000200 08000000 00000003 00000000
3ffffe00: 0000ffff 00000001 04000002 003fd000
3ffffe10: 3fff7188 000003fd 3fff2564 00000030
3ffffe20: 40101709 00000008 00000008 00000020
3ffffe30: c1948db3 394c5e70 7f2060f2 c6ba0c87
3ffffe40: 3fff7058 00000001 40238d41 3fff6ff0
3ffffe50: 3fff6f50 00000010 60000600 00000020
3ffffe60: 402301a8 3fff7098 3fff7014 40238c77
3ffffe70: 4022fb6c 40230ebe 3fff1a5b 3fff6f00
3ffffe80: 3ffffec8 00000010 40231061 3fff0f90
3ffffe90: 3fff6848 3ffed0c0 60000600 3fff6ae0
3ffffea0: 3fff0f90 3fff0f90 3fff6848 3fff6d40
3ffffeb0: 3fff28e8 40101233 d634fe1a fffeffff
3ffffec0: 00000001 00000000 4022d5d6 3fff6848
3ffffed0: 00000002 4000410f 3fff2394 3fff6848
3ffffee0: 3fffc718 40004a3c 000003fd 3fff7188
3ffffef0: 3fffc718 40101510 00000378 3fff1a5b
3fffff00: 000003fd 4021d2e7 00000378 000003ff
3fffff10: 00001000 4021d37d 3fff2564 000003ff
3fffff20: 000003fd 60000600 003fd000 3fff2564
3fffff30: ffffff00 55aa55aa 00000312 0000001c
3fffff40: 0000001c 0000008a 0000006d 000003ff
3fffff50: 4021d224 3ffecf90 00000000 3ffed0c0
3fffff60: 00000001 4021c2e9 00000003 3fff1238
3fffff70: 4021c071 3ffecf84 3ffecf30 0026a2b0
3fffff80: 4021c0b6 3fffdab0 00000000 3fffdcb0
3fffff90: 3ffecf40 3fffdab0 00000000 3fffdcc0
3fffffa0: 40000f49 40000f49 3fffdab0 40000f49
<<<stack<<<

The first number after Exception gives the cause of the reset. a
full ist of all causes can be found here
the hex after are the stack dump.

Decode

It’s possible to decode the Stack to readable information. For more info see the Esp Exception Decoder [https://github.com/me-no-dev/EspExceptionDecoder] tool.

[image: ESP Exception Decoder]
ESP Exception Decoder

Index

 _images/ESP_Exception_Decoderp.png
@ Arduino File Edit Sketch

Auto Format

Archive Sketch

Fix Encoding & Reload ctx: sys
ESP_RF12B_RCY Serial Monitor sp: 3ffffd70 end: 3ffffbO offset: 01a0

#include <ESPAZGENLF.h> Serial Plotter >>>stack>>>

Sretae et | esPEceponpecoder | bt 4omners 5120 sob0an0

Sinclude SPLm
3ffee8d 402 1baf1 3ff0d20 00000000
Finctude <SSbise. o I EEEI DU 3ffee844 3ffee820 0000cccc 4021bac0

#include <RFMIZB_ESP.h> 69b13f15 000019dc 00000001 00000011
#include 00000000 00000000 4021a8f6 3fffocds
3fff0b98 3ffedbe 3fff0bI8 4021968b
3fff0b98 00000014 40219¢36 3fffOcds
3fff0b98 3fffdc80 3fff0c38 00000001
402255ef 3fff0cd8 00000000 40205bdb.
40000749 3fffdab0 3fffdab0 40000149
<<<stack<<<

#define ENABLE_SERIAL_DEBUG
#define RFMIZENODEID 1
#define RFMIZB_NETWORK_ID 100

Debug Level: "None"
* ssid - [Reset Method: “nodemcu”

* password =

Flash Frequency: "80MHz' Decoding 9 results.

//ADC_MODE(ADC_TOUTY; Upload Using: "Serial* 0x402 1 tec7- tep. nput at 722
Ssb1306 disploy CPU Frequency: "160 MHz" 0x4021bee2: ip_input at 727
Brewire dscity; Upload Speed: "115200" 0x4021baf 1 ipaddr_aton at 727

0x402 1bae0: ipaddr_aton at 77:7
0x4021a8f6: dns_tmr at 727

/devjcu.usbserial-A5028581"

Y YYYYYYVYVYVVYY

ds_oder(8]; 0x4021968b: dhcp_stop at 77:7
ds_data[12]; 0x40219¢36: node_remove_from_list at 72:7
typedef cnum { DS_IDLE, DS_START, DS} 0x402255ef: aes_wrap at 777

o.state t ds_state - S TOLE; 0x40205bdb: MDNSResponder::addserviceTxt(char*, char*, char®, char) at

/Users [ficeto/ Desktop/ESP8266/ Arduino-Main/ build/macosx /work Arduino.app/ Contents /Java/ hardware/esp8
Decodte Success 266com/esp8266/libraries /ESP8266mDNS/ESP8266mDNS.cpp: 181

Library SPI at version 1
Library Wire at version 1
Library SSD1306 in fold

Library RFMIZE_ESP in fol

Library Onelfire in fold

Library ESPs
1 lcafaro synchronize #151

1 lcafaro synchronize #151

mcu, Dis ® DualitvaY closed #1517

_images/ESP_improved_stability.png
R2
10k

REST TXD
ADC RXD
CH_PD GPIO%
GPIO16 GPIO4
GPIO14 GPIOQ
GPI012 GPIO2
GPIO13GPIO15
VCC GND

C1 us1
ESP8266_ESP-12

— N|L0 4>|Ln|m|\||oo

10k

100n

k=

GND

_images/a-ota-external-serial-terminal-output-failed.png
07 115200 bps, 811, no handshald] [Setungs | [Gear] ([About | _J
PrOgess v
Progress: 92%

[Progress: 35%
[Progress: 36%

[Progress: 37%
[Progress: 38%

Failed attempt

ets Jan 8201315t cause:2, bootmode (1.6)

ets Jan 8201315t cause:4, boot mode (1.6) "
Failed attempt

fucitreset

_images/a-ota-external-serial-terminal-output.png
<ts Jan 82013 st couse 2 bootmode(36)

load 040101000, len 1264, room 16

_images/ESP_min.png
Jillal

= %
o REST XD o
i ADC RXD L
1 Ciro orios |2
1 GFidis crios |2
o Gore con [
Groiz arios
i GPIO13 GPIO15 -
i vee GND . -
E

Espazen_ESP12

10K

R3

_images/ESP_to_serial.png
v ava . ava v
_Power supply
ND
£ s sl ol
RESET |RTS
g 8 IX X
REST XD
ﬁ' ADC RXD ; RX JX
L crPD GPIOE
GPID1E GPIO4
2 Gpio4 Gpioo |- L GPIO0 | PTR
£ Gpio12 crio2 |2
GPID13GPIONS
lm vec ono [GND GND
c1 TTLto USB
E5Pa266_ESP-12 Entd V3
100n]
GND

_images/a-ota-network-terminal.png

_images/a-ota-ota-port-selection.png
BsicOTA | Aruino L6 o
e £t Seetch (oo Hel

Auto Format T EI

BasicC FixEncoding & Reload N
i P s | °

E5Pa266 Sketch Dota Uplosd

B Flash Size: "8M (3M SPIFFS) »

[d
! Programmer: "AVRISP midl " =
oop() Bum Bootioader i

comm

otahygrostatof
OTA DimSite

5PR265 Mode)
i< SPR2S5 Mode)

_images/a-ota-ota-upload-complete.png
BasicOTA | Arduino 167

Done uploaiing

OTA upload
complete

_images/a-ota-serial-upload-configuration.png
#inolude sy
sincruae s
sincsae <iiz|
#nclude crrd

void setupl)
Sersal.zeqs
Serta pris]
WiFs mode (]
Wit begin
wnse i
Serial.p:
aetay (50

Fash Size "4M (M SPIFFS)”
Uplosd Spesd: S21600"

Port“CoMID"

CtoshiteM
Culeshin-L

_images/a-ota-sketch-selection.png

_images/a-ota-ota-upload-configuration.png
) 8ascOTA | Arduino 1

Fie_Eat_Sceten [Too Help

BaskoTAS
Serialps

Serat peiil
)

vets 10090 {

Ao Formst
Avchiv Sketch
FiEncoding & Relosd
Seri Moritor

Seri Ploter

E59A265 Setch Dta Uplosd

Board: NodeMCU 10 65012
CPU Frequency: B M
Flsh e "4M GM SPIFFS”
Uplosdspecd: ‘921600°

Programmer ‘AVRISP midl”
Bum Bootioader

changed configuration

Arduincom.

_images/a-ota-python-configuration.png
B Python 2710 Setup.

)
A

pyth
windows

Customize Python 2.7.10

Selec the way you want features t0 be staed.
Gkon e e n i s bk o conce e

Way fatures il be taled

=

Sl rame

S| ocaumentaton
5] iy Sarpts
=T
S

Prepend C:pythani7) to the sstem Path
varate. Tris aows you t type pythort o a
command prompt without nesdng the fl path

Ths fature requies 0GB o your hard ive.

Fegster Bxtersions 5

[oskusage] (‘advanced |

[C<bak J(hext>]

[Ceone)

